

Illuminating the dark ages: the most distant quasars in (public) surveys

Bram Venemans (MPIA)

Collaborators

Team Quasars @ MPIA

- Eduardo Bañados
- Roberto Decarli
- Ema Farina
- Chiara Mazzucchelli
- Fabian Walter
- Laura Zschaechner

Pan-STARRS1 KP10

- Ken Chambers (Hawaii)
- Gisella De Rosa (Ohio)
- Xiaohui Fan (Arizona)
- Hans-Walter Rix (MPIA)
- Rob Simcoe (MIT)

KiDS QSO team (Kapteyn)

- Gijs Verdoes-Kleijn
- Johnson Mwebaze
- Edwin Valentijn
- + KiDS team (PI: Kuijken)

VIKING quasar SWG

- Richard McMahon (IoA)
- Joseph Findlay (Wyoming)
- Will Sutherland (QMUL)

UKIDSS quasar group

- Steve Warren (Imperial)
- Daniel Mortlock (Imperial)

Distant quasars: probes of the early universe

- Quasars at redshifts $z \ge 6$ can be used to:
- determine the state of the intergalactic medium
- measure space density of massive black holes
- study the formation of massive host galaxies
- locate galaxy overdensities in the early universe

The search for distant quasars

Problem: high redshift quasars are very rare
→ not found in deep (HST) blank fields
→ need multi-colour surveys over large area

The search for distant quasars

Problem: high redshift quasars are very rare

 → not found in deep HST blank fields
 → need multi-colour surveys over large area

SDSS very successful, discovered many

luminous quasars up to z = 6.4

06/10/2015

The most distant quasars, Rainbows 2015, ESO Garching

The search for distant quasars

• Problem: high redshift quasars are very rare \rightarrow not found in deep HST blank fields \rightarrow need multi-colour **surveys** over large area • SDSS very successful, discovered many luminous quasars up to z = 6.4 \rightarrow to find quasars at higher redshifts, wide

field NIR surveys are needed

- UKIDSS LAS
- VISTA/VIKING
- Pan-STARRS
- Dark Energy Survey, HSC, Euclid, LSST, ...

- UKIDSS LAS: 4000 deg², $J_{AB} \sim 20.5$
- VISTA/VIKING
- Pan-STARRS
- Dark Energy Survey, HSC, Euclid, LSST, ...

- UKIDSS LAS: 4000 deg², $J_{AB} \sim 20.5$
- VISTA/VIKING: 1500 deg², $J_{AB} \sim 21.5 22.0$
- Pan-STARRS
- Dark Energy Survey, HSC, Euclid, LSST, ...

- UKIDSS LAS: 4000 deg², $J_{AB} \sim 20.5$
- VISTA/VIKING: 1500 deg², $J_{AB} \sim 21.5 22.0$
- Pan-STARRS: 3π , $y_{AB} \sim 20.5 21.0$
- Dark Energy Survey, HSC, Euclid, LSST, ...

06/10/2015

Bright source: $M_{1450} = -26.6 (K_{AB} = 19.6!)$

) 06/10/2015

MgII line width + quasar luminosity: black hole mass

Emission lines: enrichment of broad line region

Absorption lines: reionisation, metals in IGM

06/10/2015

06/10/2015

Enrichment of broad line region

No evolution of the enrichment close to the BH up to $z \sim 7$

e.g., De Rosa+ 2014

Quasar ionisation region

Near zone size: $\mathbf{R} \sim \mathbf{f}_{\mathrm{HI}}^{-1/3}$ (e.g. Fan+ 2006)

06/10/2015

Quasar ionisation regions

Quasar ionisation regions

Characteristics of distant quasars

- Due to bright central source, need to go to farinfrared to detect host galaxy
- PdBI DDT of two quasars at z = 6.5 and z = 7.1
- ALMA Cycle 1 observations of 3 *z*>6.6 quasars

 \rightarrow Snapshot: ~15 minutes on-source

ALMA imaging of 6.6<*z*<6.9 quasars

15 min on-source (Cycle 1)

[CII] emission line & FIR dust continuum detected:

-
$$L_{[CII]} = 2.4 \text{ x} 10^9 L_{\odot}$$

- $L_{FIR} = 1.8 \text{x} 10^{12} L_{\odot}$

→ SFR~100-1500 M_☉/yr

Line widths: 250 – 400 km/s

Map of [CII] emission of *z*=6.6 host

2hr PdBI on M_{UV} =-27.2 quasar at z=6.5

06/10/2015

Summary & outlook

- Quasars ideal targets to study the early universe
- Need large surveys to discover them
- Supermassive (>10⁹ M_{sun}) BHs in 2-3 kpc dusty galaxies forming stars at >100 M_{sun}/yr
- Constrain neutral HI fraction and metal enrichment in IGM
- Study the ISM in massive galaxies up to z>7 (ALMA C3 project to study 35 quasars at z>5.9)

06/10/2015