VST ATLAS: Overview + Status

T Shanks, B Chehade, R Mackenzie, N Metcalfe et al (Durham) + ESO + CASU(MJ Irwin et al) + WFAU(RG Mann et al)

VLT 2.6-m Survey Telescope

VST ATLAS overview

- * "Southern Sloan" imaging survey
- * ~5k square degrees
- * ugriz bands
- * VST camera -256k x0.2"x0.2"pixels
- * \rightarrow 1deg x 1deg field

VST ATLAS Survey

- * VST ATLAS (+VHS) \rightarrow Southern SDSS in ugriz(+YJK from VHS)!
- * Exposures u: 2x60s, g: 2x50s, riz: 2x45s ugr (dark), iz (gray/bright)
- * Chilean u extension (PI L. Infante) \rightarrow doubles u exposure
- * seeing<1."4 better than SDSS but see later!
- * Footprint ~2500deg² in SGC and ~2200deg² in NGC
- * Equivalent of ~4000deg² ugriz observed since September 2011
- * ATLAS DR1 released 12 months ago contains \sim 1500deg² to 9/12
- * ATLAS DR2 released last week ~2500 deg² to 9/13

ESO Survey Footprints

Dec. (2000.0)

VST ATLAS Coverage (u-band)

1/10/15

VST ATLAS Coverage (i-band)

1/10/15

VHS+VIKING Progress

20/2/15

SDSS-ATLAS - r

ATLAS seeing by band

Median seeing FWHM (arcsec)

SDSS median seeing in range 1."4-1."2

ATLAS 5s point source limits

ATLAS v SDSS galaxy clusters

ATLAS i-band 0."62 seeing

SDSS i band 1."20 seeing

Schechter's quadruple lenses

ATLAS Arc Gallery

RCS0327

Planck SZ cluster at z=0.72

ATLAS i band

ATLAS Science Goals

* Cosmology

- * 10000 QSO z survey already completed via 2dF
 - pilot for larger survey with e-Rosita+4MOST
- * Integrated Sachs-Wolfe via Luminous Red Galaxies
- * QSO Lensing + galaxy ugrizYJK photo-z
 - * +quadruple lenses
- * Galaxy counts study extent of "Local Hole"
- * Other Science
 - * Z~7 QSOs via ATLAS+VHS+WISE z dropouts
 - * Beyond the Great Attractor + Fornax etc
 - Milky Way satellites + Stellar Streams
 - * White Dwarfs via ATLAS and proper motions

Crater dwarf and Cold Stream

ATLAS gri Crater dwarf (Belokurov et al)

ATLAS Cold Stream (Koposov et al)

Integrated Sachs Wolfe Effect

Cross-correlate
 Planck and ATLAS
 galaxies over
 3000deg²

 Preliminary result gives agreement with LCDM for 20<i_{AB}<21 galaxies

CMB Cold Spot ISW Supervoid

Planck SMICA

WISE-2MASS galaxies

-170 μK -0.15 δ_g 0.15

CS void – PS1 photo-z+ATLAS profile

Szapudi et al 2014 – Cold Spot supervoid

ATLAS Cold Spot radial profile

HST COS spectra of 2 CS QSOs

ATLAS+WISE high z quasars

ATLAS+WISE high z quasars

ATLAS+2dF Survey of 10000 quasar redshifts to g=22.5 (2QDES pilot - Chehade et al 2015)

Survey instruments → VST ATLAS + WISE + AAT 2dF

WISE - g~21.5 QSOs at 3.4,4.6 µm

3.4µm

4.6µm

11µm

24µm

Optical+NIR QSO selection

Quasars show ultraviolet and NIR excesses wrt stars

Aim was to get quasar densities in the range 80-100deg⁻² in ~1hr on 2dF

2dF ATLAS QSO Spectra

AAOmega Pilot QSO n(z)

QSO clustering luminosity dependence

- * Shanks et al 2011
- SDSS at g~19.5
 through 2QZ at
 g~20.8 to 2SLAQ at
 g~21.8
- ★ → similar clustering amplitudes for quasars
- * Do all quasars have the same halo mass?

Clustering compared over 10x in luminosity

0.5<2

QSO clustering vs L, z

* Quasar clustering binned by luminosity and redshift

* Little dependence on either L or z

★ ⇒ Quasar halo masses constant at $2\pm 0.2 \times 10^{12} M_{\odot}$

QSO M_{halo} (and M_{BH}) constant with z

- * QSO clustering amplitude well fitted by single halo mass (~2x10¹²M_☉) over wide z range
- ★ ⇒Indeed fainter quasars might be in higher mass haloes!?!

All quasars have the same M_{BH} ?

- $* \Rightarrow$ clustering strength independent of luminosity
- $* \Rightarrow$ quasar host halo mass independent of luminosity
- $* \Rightarrow$ quasar black hole mass independent of luminosity
- $* \Rightarrow$ all quasars have the same black hole mass?
- $* \Rightarrow$ Explain by quasar "flickering" model?

Reverberation mapping

 But "flickering" or any other model that explains clustering result

* \rightarrow contradicts M_{BH} - L relation

* Have to break $M_{BH} \sim M_{halo}^{1.8}$ relation

Peterson et al 2004

Large scale quasar clustering

- * ~85000 SDSS +
 2QZ+2SLAQ+2dF/ATL
 AS quasars at
 0.5<z<2.5
- * Little evidence of any BAO peak
- * Too small effective volume? ~0.2 Gpc³
- Need 4MOST over
 7500deg² @100deg⁻²
 to beat eBOSS

Conclusions

- * VST ATLAS ~4000/4700deg² completed (+1500deg² Chilean u)
- * Sub-arcsecond seeing available in most fields
- * VHS/WISE already covers half/full ATLAS area
- * Highlights so far
 - * New MW dwarf galaxy and stellar stream discovered
 - * Preliminary detection of ISW effect using field galaxies
 - * 4 z>6 quasars found by combining ATLAS+WISE
 - * A survey of ~10000 faint quasars completed
 - * Quasar clustering amplitude independent of luminosity

* Larger z survey needed to detect BAO – 4MOST on VISTA?

X-shooter VIS/NIR spectrum

QSO clustering: r₀ versus g

- * Quasar clustering binned by luminosity and redshift
- * Little dependence on either L or z
- * \Rightarrow Quasar halo masses fixed at $3.5 \pm 1 \times 10^{12} M_{\odot}$

VST ATLAS Survey

R.A. (2000.0)

White Dwarfs - ugr+proper motions (R. Raddi et al)

