Resolving the Extragalactic Background into Normal Star Forming Galaxies with ALMA

Seiji Fujimoto, Masami Ouchi, Yoshiaki Ono, Masafumi Ishigaki, and Rieko Momose (University of Tokyo)

Data

Number (Resolving EBL

Extragalactic Background Light (EBL)

EBL have not been fully resolved...

Galaxy Bias

Counterpart

This work: <u>Largest dataset of multi-field deep ALMA</u> <u>-> Resolve EBL</u>

) (Anal<u>ysis</u>

Number) (Resolving EBL

L) (Galaxy Bias)

(Counterpart)

Sample Selection

Data

DATA: ALMA Band 6 & 7

• Our quite deep 4 ALMA data

+

• ALL ALMA data so far archived (2011/12 - 2015/3)

- Noise level < 0.1 mJy
- No too Bright/Extended Sources

<u>Total</u>: ~51 maps (~100 pointings) <u>Survey Area:</u> ~7arcmin² (Largest Survey) <u>Noise level</u>: 8.5 - 100 uJy

) (<u>Analysis</u>

Number) (Resc

Resolving EBL

) (Counterpart

Cluster Data (1 map)

Data

- Multiple image: Diego+14
- Optical Catalog: Diego+14, Coe+10
- Software: GLAFIC (Oguri 10)

(e.g., Ishigaki+15)

Simulated cluster modelling challenge

- Simulated clusters can be found here: <u>http://pico.bo.astro.it/~massimo/Public/</u> <u>FF/ares.html</u> [login: FFmodeler passwd:FFmagnify]
- Color image: <u>http://www.stsci.edu/~dcoe/FF/MAX/ares/</u>
- Natarajan, Meneghetti & Coe will compare the results provided by different modellers => ultimate goal: improve lens modelling I

Jean Paul KNEIB - Yale Frontier Fields Workshop - Nov 13, 2014

(Organized by D. Coe+)

Galaxy Bias

Mass model uncertainty is reported <u>~ 20-30%.</u>

Analysis

Resolving EBL

Galaxy Bias Counterpart

Field Data (50 maps)

Data

Number Counts

Number (Reso

Resolving EBL) (Galaxy Bias

Data Analysis

Resolve EBL -> Derive <u>Number Counts</u>

(e.g., Hatsukade+13, Ono+14, Carniani+15)

* All flux densities (1.1-1.3 mm) are scaled to 1.2 mm

) (Analysis

Number (Reso

Resolving EBL

Galaxy Bias) (Counterpart

Number Counts at 1.2 mm

Data

) (Analysis

Number) (Reso

Resolving EBL

Galaxy Bias) (Counterpart

Resolve the EBL

Data

- Almost fully (102±30%) resolve the EBL
- < 0.01 mJy sources might be negligible

What are the faint ALMA sources ?

Data

Number Counts (Resolving EBL

1. Statistical Approach: Cluster Analysis

Field-to-Field Scatter - Poisson error = Galaxy Bias

<u>Counts-in-Cells</u>

$$b_g^2 \approx \frac{\sigma_N^2 - \bar{N}}{\bar{N}^2 \sigma_V^2(z)}$$

(e.g., Robertson+10)

 b_g : galaxy bias σ_V : matter variance σ_N : dispersion of source counts N: mean source counts

Faint ALMA Sources

 $b_g < 4.1$ (ACDM->) $M_{DH} < 8 \times 10^{12} M_{sun}$ 1. Statistical Approach: Cluster Analysis

Analysis

Number

Resolving EBL

Data

Intro

Faint ALMA Sources
 b_g < 4.1

Galaxy Bias

Counterpart

- <u>SMGs / DRGs / pBzK</u>
 b_g ~ 5 7
- <u>sBzK / LBGs / LAEs</u>
 b_g ~ 2 3

Faint ALMA Sources = sBzK, LBGs, LAEs?

Data

Number Counts (Resolving EBL

BL) (Galaxy Bias

2. Individual-basis Approach: Optical Counterparts

- Optical counterparts in SXDS, A1689 with rich multiwavelength data
- 25 sources in these fields effectively (N_{det} N_{spu})
- 15/25 Sources (~60%) have optical counterparts

Number

Resolving EBL

Galaxy Bias Counterpart

Photometric Properties

Data

Bzk & LBG Selection AGN or SB? DS-31 Arp220 (SB) Old galaxies star-forming galaxies LF Gs (z~3) 25 x > 1.4Mrk231 (AGN) FAS-SXDS-31 FAS-SXDS-11 20 FAS-SXDS-32 FAS-SXDS-10 FAS-CDS-12 (12-2.3) Star burst 1 $S_{24\mu m}/S_{8\mu m}$ FAS-SXDS-FAS-SXDS-31 S-SXDS-12 FAS-SXDS-11 FAS-SXDS-32 × 2 15 \mathcal{C} FAS-SXDS-7 U_n -1.0 1/2-1.71 FAS-SXDS-27 FAS-SXDS-10 10 FAS-A1689-12 Stars 0 AGN 0 1.5 1.5 2.0 5 2.5 3.0 2.0 2.5 3.0 4.5 3.54.0 0 0 2 6 4 2 3 5 0 0 1 2 B-z $S_{8\mu m}/S_{4.5\mu m}$ G-R

Faint ALMA Sources = sBzK / LBG(BX/BM)

- **Clustering (Statistical)**
- **Opt. Counterparts (Individual)**

Faint ALMA Sources Optically Selected SFGs

Summary

Largest ALMA Dataset (85 sources: down to 0.01 mJy)

Number Counts -> Resolve ~ 100% of EBL

What are Faint ALMA Sources ?

-> Opt. Selected SFGs (Clustering & Opt. Counterparts)

This research was supported(, in part,) by a grant from the Hayakawa Satio Fund awarded by the Astronomical Society of Japan.