Infrared Dark Clouds seen by *Herschel* and ALMA

Ke Wang ESO Fellow www.eso.org/~kwang

Collaborators: Qizhou Zhang, Xing (Walker) Lu, Izaskun Jimenez-Serra

IR-dark clouds: shadows in infrared sky

IRDCs

Image credit: GLIMPSE/MIPSGAL

 $3.6/8/24\mu m$

IRDC Catalogues

- Simon+06 identified 11,000 IRDCs from MSX images
- Peretto & Fuller 09: similar number of IRDCs from Spitzer data
- 80% of the two catalogues do not overlap
- Wilcock+12: about 2/3 of these IRDC candidates not seen at far-IR with Herschel (cf. Jackson+08) → genuine IRDCs are overestimated

Ragan+2012 EPoS

Molinari+2010 Hi-GAL

17/4/2015

Massive Star (Cluster) Formation

 10^{2} pc n(H₂) ~ 10^{2} cm^{-3} M ~ 10^{5} Msun .

•

- What is the initial conditions (physical/chemical) for cluster star formation?
- How do massive clumps fragment & which processes control fragmentation?
- How to make massive cores?
 - **Does cluster star formation process in equilibrium?**

See review by Zinnecker & Yorke 2007

Herschel/ALMA Workshop, ESO

ge

Clump Fragmentation: IRDC G28.34 P1 will evolve into P2 VLA NH₃ (Contours) d=4.8kpc Spitzer 8µm(color) 1.2mm continuum IRDC G28,34 59 Northermegion P2 2.5 -04°00′ -04°00′ 880 Msun 0.3 HII reg 01 01 (J2000) § (J2000) 02' 38 Msun 02 2 4pd 03 4 3pc 03 1000 Msun 04 04 0.1 pc -04°05 –04[°]05′ 56 52 48 56 52" 18°43'00' 44 18°43'00' 22 Msun 48 \bigcirc α (J2000) α (J2000)

Zhang, Wang, Pillai, Rathborne 2009; Wang, Zhang, Pillai, Wyrowski, Wu 2008 Wang, Zhang, Rathborne, Jackson, Wu 2006

17/4/2015

Cores contain many Jeans mass

 $n(H_2)=7\times10^4$ cm⁻³, T=15K

For spatially resolved

cores (res $< L_{\rm J}$)

Zhang, Wang, Pillai, Rathborne 2009

See also Brogan et al. 2009; Longmore et al 2010; Csengeri et al. 2010, 11; Pillai et al. 2011; Tan et al.201317/4/2015Herschel/ALMA Workshop, ESO10

Hierarchical Fragmentation

Comparison with Jeans fragmentation: Thermal fragmentation does not explain massive cores Additional support from turbulence and/or magnetic field

G28.34: Further Fragmentation:

Cores further fragment into condensations at a res ~ 0.5" M = several - 10 Msun

 $n(H_2)=10^6 \text{ cm}^{-3}$, T=16K M_J (thermal) = 0.5 Msun L_J = 0.025 pc (1")

For Spatially resolved condensation (res < L_J) M_{frag}/M_J > 10

See also Brogan et al. 2009; Longmore et al 2010' Csengeri et al. 2010, 11

Wang, et al. 2011

17/4/2015

G28.34: ALMA Observations

ALMA observations reached a 30 mass sensitivity of 0.15 Msun, far below the global Jeans mass of 2 Msun.

Zhang Wang, et al. 2015

Chemistry:

17/4/2015

Emission from Dense Cores:

Does cluster formation from equilibrium gas

Name	M_{gas}	ΔV^a	Radius	M _{vir}	α^b
	(M_{\odot})	$(\rm km~s^{-1})$	(pc)	(M_{\odot})	
Clump G28-P1	1000	2.67	0.30	440	0.44
Core 1	28.0	1.20	0.023	6.93	0.25
Core 2	21.0	1.50	0.021	9.91	0.47
Core 3	22.0	0.940	0.023	4.28	0.19
Core 4	43.0	1.10	0.028	7.07	0.16
Core 5	20.0	1.70	0.010	6.34	0.31
Condensation 1a	8.34	1.70	0.0086	5.2	0.62
Condensation 2a	6.38	1.70	0.0086	15.6	0.81
Condensation 3a	8.01	1.70	0.0086	15.6	0.64
Condensation 4a	8.08	1.70	0.0086	15.6	0.64
Condensation $5a$	9.75	1.70	0.0086	15.6	0.53

 $\alpha = \frac{M_{vir}}{M} = \frac{5\sigma^2 R}{GM}$

See also Csengeri et al. 2011, Pillai et al. 2011, Tan et al. 2013

Magnetic fields may play an important role in cloud support

B ~> 1 mG see Zhang et al 2014.

CO Outflows

10 molecular outflows Outflow energetics consistent with those of intermediate stars

Outflow energy ~ turbulent energy

 $M_{acc} \sim 10^{-5}$ Msun/yr

Need 10⁶ yrs to form 10 Msun *if* M_{acc} = cont.

Chemical Differentiation

Cores 2,3,4 are chemically more advanced than Cores 1,2 Comparison with protostellar cores in DR 21 filament suggests Cores 2,3,4 harbor intermediate mass protostas!

Chemical Evolution: Cold Core to Hot Core

Follow dynamic collapse and chemical evolution (depletion) under a constant T Turn on protostellar heating and follow chemical evolution in gas phase See Viti et al. 2004

With Jimenez-Serra, Viti et al.

van Dishoeck & Blake 1998

Herschel/ALMA Workshop, LSO

Zhang, Wang, Lu, Jiminez-Serra, 2015

Wang et al. 2011,2012,2015

Where are low-mass protostars?

17/4/2015

Where are low-mass protostars?

Simulated ALMA observations using G28 and NGC1333

A low-mass such as NGC1333 can be reliably detected if present

Low-mass protostars form after massive ones in a cluster

Conclusions

- Hershel is the right telescope to identify intrinsically cold and dense molecular clumps, better than just IR-dark!
- Massive cores formed during early fragmentation are 10x to 10²x more massive than thermal Jeans mass → Important role of turbulence support and perhaps magnetic fields.
- Gas in cluster forming clumps is sub-virial, unless magnetic fields are strong (~ mG)
- Massive protostars grow from low-intermediate mass protostars.
- Dense cores harboring massive stars undergo significant increase in temperature (and perhaps mass). As a result, they undergo chemical change during the early evolution.
- Low-mass protostars appear to form after the formation of massive_@tars. Herschel/ALMA Workshop, ESO