From Herschel to ALMA: looking at dusty and gassy galaxies.

Eelco van Kampen, ESO

Herschel-ATLAS

- The widest area survey with Herschel (~ 550 sq deg)
- Consortium of 150+ astronomers worldwide led by Nottingham and Cardiff (Dunne, Eales)
- Covering 5 bands with PACS and SPIRE (110 – 500 microns) in fast parallel mode
- 5 sigma sensitivities of 132, 126, 33, 36 and 45 mJy / beam from 110-500μm
- Detect ~ 10^5 sources to z~3

Herschel-ATLAS

Fields chosen to allow maximum overlap with existing and planned surveys GALEX, 2dF, SDSS, GAMA, UKIDSS, KIDS, VIKING, PanSTARRS, DES, SPT, SASSy

and to be accessible to new facilities which will be valuable for follow-up ALMA, SKA and prototypes, SCUBA2, LOFAR, e-MERLIN

Herschel data: population statistics

Angular clustering of local sub-mm galaxies

From Herschel-ATLAS + GAMA

All 250 micron sources

sources with redshifts (GAMA+photo-z)

redshift distribution

Angular clustering of local sub-mm galaxies

From Herschel-ATLAS + GAMA

van Kampen et al. (2012)

Lenses in the *Herschel*-ATLAS SDP field

Negrello et al. (2010)

H-ATLAS ID	SDP ID	S_{100} (mJy)	S ₁₆₀ (mJy)	S ₂₅₀ (mJy)	S ₃₅₀ (mJy)	S ₅₀₀ (mJy)	S ₈₈₀ (mJy)	S ₁₂₀₀ (mJy)
H-ATLAS J090740.0-004200	9	187 ± 57	416±94	485±73	323±49	175 ± 28	_	7.6±0.8
H-ATLAS J091043.1-000321	11	198 ± 55	397 ± 90	442 ± 67	363 ± 55	238 ± 37	_	12.2 ± 1.2
H-ATLAS J090302.9-014127	17	78 ± 55	182 ± 56	328 ± 50	308 ± 47	220 ± 34	—	15.3 ± 1.3
H-ATLAS J090311.6+003906	81	≤ 62	≤ 83	129 ± 20	182 ± 28	166 ± 27	76.4 ± 3.8	20.0 ± 0.7
H-ATLAS J091305.0-005343	130	_	—	105 ± 17	128 ± 20	108 ± 18	39.3 ± 2.3	11.2 ± 1.2

SMA IRAM

SDP 81 before ALMA ...

SDP 81

Herschel

Keck & SMA

SDP 81 with ALMA

ALMA Partnership et al. 2015, arXiv:1503.02652

2012.1.00973.S – PI: Dunne 2013.1.00058.S – PI: Vlahakis

CO + CI for nearby *Herschel*-ATLAS galaxies

Figure 1: Simulations of HI, H2 and CO (as a molecular gas tracer) from Pelupessy & Papadopoulos (2009). The right-hand panel shows the combined simulation of stars, gas and dust. The two central panels clearly show how much more extended the true H2 distribution is compared to CO.

2012.1.00973.S: 12 galaxies around z~0.35, band 3 for CO(1-0), band 7 for CI(1-0) sources unresolved in band 3, resolved in band 7

2013.1.00058.S: 15 galaxies around z~0.07, band 3 for CO(1-0), band 8 for CI(1-0) aim to resolve sources in band 3 as well as band 8

2012.1.01080.S – PI: Ibar

- 41 galaxies in the redshift range 0.15 0.35, band 3 for CO(1-0) line detection
- most compact configuration (barely resolving the galaxies)
- each galaxy has Herschel photometry from 100 to 500um and optical spectroscopy from SDSS and GAMA surveys

false-colour *Herschel* PACS images of five of the targets

ALMA follow-up for high-z clusters

For example, those detected by SpARCS:

The Spitzer Adaptation of the Red-Sequence Cluster Survey (PI: Gillian Wilson)

Detected using the cluster red sequence, then confirmed by spectroscopic redshifts

Coma cluster color-magnitude diagram

2012.1.00463.S – PI: Demarco

Resolving SPIRE blobs: an ALMA Cycle 2 filler project to resolve the SPIRE emission of a cluster galaxy at z=1.63

Figure 1: Positions of the three central cluster members (blue circles) in SpARCS J022426-032330 (z = 1.63) and their surroundings, superimposed on the IRAC 1, MIPS 24 μ m and SPIRE 250 μ m images (from left to right). The BCG is the object ID 3508. The green contours help to visualize the 250 μ m flux distribution, whereas the red circle represents ALMA's band 3 primary beam at the proposed pointing. Each image is around 2 arcmin a side.

Which archive ?

Lots more ALMA proposals and projects based on *Herschel* data ... but also based on data from SCUBA-2, SPT, APEX, etc.

Accessibility and user-friendliness of the archive can be a deciding factor for ALMA PIs in their quest for interesting targets ...