Mid-J CO Diagnostics of Turbulent Dissipation in Molecular Clouds

Andy Pon

Mid-J CO Diagnostics of Turbulent Dissipation in Molecular Clouds

GMCs Contain Supersonic Turbulence

Andy Pon

Mid-J CO Diagnostics of Turbulent Dissipation in Molecular Clouds

Key Prediction: Mid J CO lines should trace shocked gas!

2.4 2.6 2.8 3.0 3.2 log(wavlength) [log(microns)]

2.2

Mid-J CO Diagnostics of Turbulent Dissipation in Molecular Clouds

17.04.2015

3.4

Andy Pon

Mid-J CO Diagnostics of Turbulent Dissipation in Molecular Clouds

CO Observations

Andy Pon

Mid-J CO Diagnostics of Turbulent Dissipation in Molecular Clouds

Key Observation: CO 6-5 line is too bright for PDR models!

50

Andy Pon

0

Mid-J CO Diagnostics of Turbulent Dissipation in Molecular Clouds

Upper Level Energy (K)

100

17.04.2015

150

- Volume filling factor of the shocked gas is 0.15%.
- Turbulent energy dissipation rate is 3.5 x 10³² ergs s⁻¹.
- Turbulent energy dissipation timescale is three times smaller than the flow crossing timescale.

- This shock emission should be ubiquitous. It should be present towards any molecular cloud, if one looks deep enough and away from other heating sources.
- SPIRE has sensitivity to these mid-J lines.
- SPIRE has an array of 19 pixels for the 6-5 to 8-7 lines.
- Is there anything in your 'uninteresting' off-source pixels?

IRDCs

Butler & Tan (2012)

Wang et al. (2012)

Andy Pon

Mid-J CO Diagnostics of Turbulent Dissipation in Molecular Clouds

Andy Pon

Mid-J CO Diagnostics of Turbulent Dissipation in Molecular Clouds

Mid-J CO Diagnostics of Turbulent Dissipation in Molecular Clouds

IRDC G

Andy Pon

Mid-J CO Diagnostics of Turbulent Dissipation in Molecular Clouds

IRDCs

Mid-J CO Diagnostics of Turbulent Dissipation in Molecular Clouds

- Key difference between shock heating and cosmic ray or ISRF heating is that shocks are intermittent.
 - Shock heated gas should be highly spatially variable such that this emission will not be filtered out by ALMA.
 - The shocks should also be somewhat randomly distributed, rather than well collimated as in protostellar outflows.
- ALMA should reveal the spatial distribution of shocks
 - The locations of shocks may hold clues to the formation mechanisms of GMCs
 - ALMA should benefit from much larger beam filling factors

- Molecular clouds contain supersonic turbulence and this turbulence should decay relatively rapidly.
- Most of this turbulent energy is dissipated via CO lines.
- Mid to high J CO lines trace shock emission and are observable!
- Perseus B1-E5 has emission in mid J CO lines above that predicted by PDR models, as expected for shock emission.
- IRDCs show regions with enhanced mid J CO emission, inconsistent with PDR models
- ALMA provides the capability to resolve individual shock structures

8 to 7

IRDC Observations

9 to 8

Andy Pon

Mid-J CO Diagnostics of Turbulent Dissipation in Molecular Clouds

$n = 10^{3.5} \text{ cm}^{-3}$

Predicted Line Strengths

J=3→3

2.6 2.8 3.0 3.2 log(wavlength) [log(microns)]

Predicted Line Strengths

2.6 2.8 3.0 3.2 log(wavlength) [log(microns)]

Predicted Line Strengths J=3→2

2.6

2.6 2.8 3.0 log(wavlength) [log(microns)]

3.2 3.4

=2-

J=2→

J=4→3

J=2→1

J=1→I

3.4

J=1→I

3.4

J=1→

J=4→3

J=6^J=

$n = 10^3 \text{ cm}^{-3}$

 $n = 10^{2.5} \text{ cm}^{-3}$

 $v = 3 \text{ km s}^{-1}$ b = 0.3

 $v = 3 \text{ km s}^{-1}$ b = 0.1

Andy Pon

CO SED

Andy Pon

Mid-J CO Diagnostics of Turbulent Dissipation in Molecular Clouds