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Ridge  et  al.  (2006)	

Observed	
(FWHM  =  1.9  km  /  s)	

Thermal  broadening  
alone	
(FWHM  =  0.2  km  /  s)	

13CO  J  =  1-‐‑0	

GMCs Contain Supersonic Turbulence 
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Stone  et  
al.  (1998)	
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Key  Prediction:	
Mid  J  CO  lines  
should  trace  
shocked    gas!	
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Sadavoy  et  al.  (2013)	

Perseus  B1-‐‑E5	
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CO Observations 
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CO SED 

Key  Observation:	
CO  6-‐‑5  line  is  too  
bright  for  PDR  

models!	
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Consistent with Shock Models 
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Shock Properties 

•  Volume filling factor of the shocked gas is 0.15%.  

•  Turbulent energy dissipation rate is 3.5 x 1032 ergs s-1. 

•  Turbulent energy dissipation timescale is three times 
smaller than the flow crossing timescale. 
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Archival Value 

•  This shock emission should be ubiquitous. It should be 
present towards any molecular cloud, if one looks deep 
enough and away from other heating sources. 

•  SPIRE has sensitivity to these mid-J lines. 

•  SPIRE has an array of 19 pixels for the 6-5 to 8-7 lines. 

•  Is there anything in your ‘uninteresting’ off-source pixels? 
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IRDCs 
Butler  &  Tan  

(2012)	
	

Wang  et  al.  (2012)	
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IRDC F 
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IRDC C 
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IRDC G 
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IRDCs 
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5-‐‑4	 6-‐‑5	 7-‐‑6	 8-‐‑7	

Band  9	
Band  10	
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Why ALMA? 

•  Key difference between shock heating and cosmic ray or 
ISRF heating is that shocks are intermittent. 

o  Shock heated gas should be highly spatially variable such that this emission will 
not be filtered out by ALMA. 

o  The shocks should also be somewhat randomly distributed, rather than well 
collimated as in protostellar outflows. 

•  ALMA should reveal the spatial distribution of shocks 

o  The locations of shocks may hold clues to the formation mechanisms of GMCs 

o  ALMA should benefit from much larger beam filling factors 
 

 



Mid-J CO Diagnostics of Turbulent Dissipation in Molecular Clouds Andy Pon 17.04.2015 

Summary  

•  Molecular clouds contain supersonic turbulence and this 
turbulence should decay relatively rapidly. 

•  Most of this turbulent energy is dissipated via CO lines. 
•  Mid to high J CO lines trace shock emission and are 

observable! 
•  Perseus B1-E5 has emission in mid J CO lines above that 

predicted by PDR models, as expected for shock 
emission. 

•  IRDCs show regions with enhanced mid J CO emission, 
inconsistent with PDR models 

•  ALMA provides the capability to resolve individual shock 
structures 
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IRDC  Observations	8  to  7	 9  to  8	

IRDC  C	

IRDC  F	
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n  =  102.5  cm-‐‑3	 n  =  103  cm-‐‑3	 n  =  103.5  cm-‐‑3	

v  =  3  km  s-‐‑1	
b  =  0.3	

v  =  2  km  s-‐‑1	
b  =  0.1	

v  =  3  km  s-‐‑1	
b  =  0.1	
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CO  5  -‐‑  4	

CO  6  -‐‑  5	
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CO SED 


