

Xavier Bonfils (IPAG/CNRS/UJF, Grenoble) ESO Garching Feb. 4th, 2013

& the ExTrA Team (IPAG) : P. Kern , L. Jocou, E. Stadler, Y. Magnard, Th. Moulin, L. Gluck, S. Lafrasse, S. Rochat, P. Feautrier, X. Delfosse, T. Forveille, ...















# Transiting planets

- ~1/2 known exoplanets (~450/1050, +thousands candidates)
- open up a wealth of physical properties radius, true mass (+RV), density, structure, eccentricity, tilt star/orbit, chemical composition, clouds and hazes, T-P profile, winds, climate, ...
- characterization needs very high S/N observations



Xavier Bonfils

Method

Design

Extra

# Transiting planets

- ~1/2 known exoplanets (~450/1050, +thousands candidates)
- open up a wealth of physical properties radius, true mass (+RV), density, structure, eccentricity, tilt star/orbit, chemical composition, clouds and hazes, T-P profile, winds, climate, ...
- characterization needs very high S/N observations



Xavier Bonfils

Tuesday, February 4, 14

Method

Design

Extra

# Transiting planets

- ~1/2 known exoplanets (~450/1050, +thousands candidates)
- open up a wealth of physical properties
  - radius, true mass (+RV), density, structure, eccentricity, tilt star/orbit, chemical composition, clouds and hazes, T-P profile, winds, climate, ...

CO,

1.8

1.6

characterization needs very high S/N observations



Seager & Deming (2009)



# Methods (ground based)

- Method
- Design
- Extra

# multi-band differential photometry (broad or short band)

# high-res spectro

- + efficient, self calibrated loose spectral continuum, rely on line list knowledge
- <u>multi-object spectroscopy</u>





#### exoELT 2014 @ ESO Garching

Tuesday, February 4, 14



High spectral resolution resolves correlated noise.

Enables correction before eventually degrading that spectral resolution, to boost S/N.



Context

Method

Design

Extra

dispersion direction.



mask w/ large slits



also w/ GMOS (Gibson et al. 2012; Crossfield et al. 2013)

# First results

Context

Method

Design

Extra

2380 *P. L. Wood et al.* (2011)



# FLAMES

#### $9-\sigma$ detection of Na absorption



Figure 6. Transit depths for WASP-17b shown as crosses with error bars. S08 values for HD 209458b, scaled up by factors 4.2–5.1, are shown as plain error bars; transit depths for the comparison star are shown as triangles with error bars. Diamonds represent the uncertainties due to photon noise.

no further results so far... perhaps because of the imperfect micro-lens transmission...

**Xavier Bonfils** 

Tuesday, February 4, 14

exoELT 2014 @ ESO Garching

# KMOS?







Several on-going programs with K-MOS => experience that can inform MOS design

model thanks to D. Ehrenreich

ongoing observations (Saglia et al.)

**Xavier Bonfils** 

Methoo

Design

Extra



# **Systematics**

- tracking (case B) or seeing variations (case C) induces flux losses
- bad centering induces <u>differential</u> flux losses

# **Injection design**

- large "apertures" (or field of view), but not too large because of the sky
- precisely centered on star PSF
- minimal repositioning error
- precise guiding

# **Aperture values**

(simulations used by the Science Team to define the TLRs)

#### case : precision = 10<sup>-4</sup>

- seeing=1.5", seeing variation=10%
  - aperture > 5"x5"
  - centering precision < 0.2" (pTp)</li>
  - integrated tracking precision < 0.05" (pTp)</li>

### case : precision = 10<sup>-6</sup>

- seeing<1.0", seeing variation=30%</li>
  - aperture > 5"x5"
  - centering precision < 0.05" (pTp)</li>
  - integrated tracking precision < 0.05" (pTp)</li>

seeing var = 10%

centering < 0.1" (pTp)

- star positions do change ! (e.g. field geometry or differential refraction)
- can be accommodate by (unnecessarily) larger apertures
- <u>active</u> centering should be preferred

Context

Method

Design

#### **Xavier Bonfils**

# The ExTrA facility

**Cassegrain Units** 

5 movable field units (1 target + 4 comp. stars)

each field unit injects

star & sky flux

in 2x4 fibers

positionners are

piezo-electric

stages assemblies



#### Telescopes

ASA600 RC

3

60cm

f/8

57'x57'

numbers

diameter

f-ratio

fov

### Spectrograph

R>200

~90% transmission

input : 120 fibers output : 120 spectra

Camera InGaAs LN2 cooled 0.8-1.55µm RON<20edark < 5e-/pix/sec

#### **Field Units** matrix of square µlenses

>99% filling factor

both star&sky injected in 2x4 fibers

fibers

The ExTrA facility Context Method E x r A Design WWWWWW Extra fibers

Xavier Bonfils





active positioning 23.3µm <-> 1 arcsec (600mm, f/8)

Tuesday, February 4, 14

# **Filed Unit Design**

- + active centering
- measure of photocenter position
- stable illumination
- sky measured next to each object to remove OH emission
- large FOV (5-10" width)



## If filling factor <100% ?

- 1µm dead zone => defocus = 2", aperture=10"x10", centering < 0.1"</li>
- alt/ : perform dithering or PSF shaping w/ active positioning
- lab. tests foreseen

# Alt/ design ?

Context

Method

Design

Extra



#### Similar to :

taper section

multimode fiber

45

low index capillary tube 0 40 mm 70 mm

Figure 1. (top panel) Schematic illustration of the photonic lantern. (bottom panel) Microscope pictures at different positions along the down taper transition.

C. Schwab's poster

exoELT 2014 @ ESO Garching

Tuesday, February 4, 14

# Expected performances

#### precision = 0.01% in 240s for J=8







# Other requirements

Precision also affected by <u>detector</u> non-linearities (pixel response, charge transfer efficiency, intra-pixel response, remanence...):

- spread spectra over many pixels to average down the systematics

- full a priori characterization

#### <u>Multiplexing</u>:

- goal : 10x more flux on comparison stars than on target

- comparisons are better if the same brightness as the target

=> mux ~ a few

#### Wavelength:

| $R, desime       ~Few       300       ≥30       20         R, desime       300       300       300       300       300         *H_2O       0.51, 0.57, 0.57, 0.53       1.13, 1.38, 0.62       conti-muum         *CO2       -       1.21, 1.57, 0.57, 0.52, 0.34       -       15.0         *CO2       -       1.21, 1.57, 0.57, 0.52, 0.34       -       15.0         C2H2       -       1.52, 3.0       -       14.0         C2H4       -       3.4       -       12.1         O3       0.45-       4.7       9.1, 9.6       14.3         O3       0.45-       4.7       9.1, 9.6       14.3         D0       -       2.7, 3.67       7.13       -         HDO       -       2.7, 3.67       7.13       -         M3       0.55, 0.65, 0.59, 0.29, 0.25, 0.29, 0.30       -       -       -         NH3       0.55, 0.65, 0.59, 0.29, 0.30       -       -       -         NH3       0.55, 0.65, 0.7, 0.33       8.9, 10.1       -       -         VCH4       0.48, 0.57, 0.5, 1.65, 2.2, 0.5, 7.7       -       -       -         NB3       0.55, 0.65, 0.7, 0.3.3       -       -    $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               | $0.4-1\mu\mathrm{m}$ | 1-5 µm      | 5-11 µm    | 11-16 µm |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------|-------------|------------|----------|
| base-<br>line         tens         initial         sead         sead $R, de-sired         300         300         300         300           *H2O         0.51, 0.57,0.65, 0.72,0.82, 0.94         1.13, 1.38,0.65, 0.72,0.82, 0.94         6.2         conti-nuum           *CO2         -         1.21, 1.57,0.6, 2.03,4.25         -         15.0           C2H2         -         1.52, 3.0         7.53         13.7           HCN         -         3.00         -         14.0           O2H6         -         3.4         -         12.1           O3         0.45-0.75         (theChappuisband)         -         14.3           HDO         -         2.7,3.67         7.13         -           VCO         -         1.57, 2.35,4.7         -         -           NH3         0.55, 0.65,0.76, 1.27         2.25, 2.9,3.0         -         -           NH3         0.55, 0.65,0.76, 1.27         1.65, 2.2,0.93         6.5, 7.7         -           Ref         -         3.34, 4.5         6.8, 7.7,8.6         -           CH3D         -         -         -         -           NSQ         -         2.5, 3.8         7<$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <i>R</i> ,                    | $\sim$ Few           | 300         | $\geq 30$  | 20       |
| line         and         descent         and         and         and $R, de_s$ 300         300         300         300         300 $sired$ 0.51, 0.57, 1.13, 1.38, 0.62         continuum         nuum         nuum $0.82, 0.94$ 1.9, 2.69         6.2         continuum         nuum $0.82, 0.94$ 1.21, 1.57, -         15.0         1.50         nuum $C_2H_2$ -         1.52, 3.0         7.53         13.7           HCN         -         3.0         -         12.1 $O_3$ 0.45-         4.7         9.1, 9.6         14.3 $0.75$ (the         Chappuis         -         -         - $band$ -         1.57, 2.35, -         -         - $0.76, 1.27$ -         -         -         - $0.76, 1.27$ -         -         -         - $0.78, 0.85, 0.65, 0.25, 0.25, 2.2, 2.5, 2.9, 3.0         -         -         -           0.79, 0.86, 3.3         -         -         -         -           CH_3D         -         3.34, 4.5         6.8, 7.7, -      $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | base-                         | tens                 |             |            |          |
| R, de-<br>sired       300       300       300       300       300         *H <sub>2</sub> O       0.51, 0.57,<br>0.65, 0.72,<br>0.82, 0.94       1.13, 1.38,<br>1.9, 2.69       6.2       conti-<br>nuum         *CO <sub>2</sub> -       1.21, 1.57,<br>1.6, 2.03,<br>4.25       -       15.0         C <sub>2</sub> H <sub>2</sub> -       1.52, 3.0       7.53       13.7         HCN       -       3.0       -       14.0         C <sub>2</sub> H <sub>6</sub> -       3.4       -       12.1         O <sub>3</sub> 0.45-<br>0.75 (the<br>Chappuis<br>band)       4.7       9.1, 9.6       14.3         HDO       -       2.7, 3.67       7.13       -         O <sub>2</sub> 0.58, 0.69,<br>0.76, 1.27       -       -       -         NH <sub>3</sub> 0.55, 0.65,<br>0.93       2.25, 2.9,<br>3.0       6.1, 10.5       -         NH <sub>3</sub> 0.59, 0.69,<br>0.79, 0.86, 3.3       -       -       -         CH <sub>4</sub> D       -       3.34, 4.5       6.8, 7.7,<br>8.6       -         CH <sub>3</sub> D       ?       3.34, 4.5       6.8, 7.7,<br>8.6       -         NO <sub>2</sub> -       3.4       6.2, 7.7       13.5         N <sub>2</sub> O       -       3.4       6.2, 7.7       13.5         Res       -       - </td <td>line</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | line                          |                      |             |            |          |
| sired $   -$ *H <sub>2</sub> O         0.51, 0.57, 0.65, 0.72, 0.65, 0.72, 1.9, <b>2.69</b> 1.9, <b>2.69</b> nuum           *CO <sub>2</sub> -         1.21, 1.57, 1.6, 2.03, 4.25         -         15.0           C <sub>2</sub> H <sub>2</sub> -         1.22, 3.0         7.53         13.7           HCN         -         3.0         -         14.0           C <sub>2</sub> H <sub>6</sub> -         3.4         -         12.1           O <sub>3</sub> 0.45-         4.7         9.1, 9.6         14.3           O <sub>75</sub> (the Chappuis band)         -         1.57, 2.35, -         -           PHO         -         2.7,3.67         7.13         -           O <sub>2</sub> 0.58, 0.69, 0.76, 1.27         -         -         -           NH <sub>3</sub> 0.55, 0.65, 0.2, 2.2, 0.50, 0.5         -         -         -           NH <sub>3</sub> 0.55, 0.65, 1.5, 2.2, 0.5, 7.7         -         -         -           NH <sub>3</sub> 0.57, 0.86, 3.3         -         -         -           CH <sub>4</sub> D         0.48, 0.57, 0.5, 3.3, 3.4         6.9, 10.5         -           CH <sub>3</sub> D         ?         -         -         -           N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R, de-                        | 300                  | 300         | 300        | 300      |
| *H <sub>2</sub> O 0.51, 0.57, 0.65, 0.72, 0.82, 0.94<br>*CO <sub>2</sub> - 1.21, 1.57, - 15.0<br>*CO <sub>2</sub> - 1.21, 1.57, - 15.0<br>C <sub>2</sub> H <sub>2</sub> - 1.52, 3.0<br>C <sub>2</sub> H <sub>2</sub> - 1.52, 3.0<br>C <sub>2</sub> H <sub>4</sub> - 3.4<br>- 12.1<br>O <sub>3</sub> 0.45<br>band) - 12.1<br>O <sub>3</sub> 0.45<br>C <sub>1</sub> C <sub>1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | sired                         |                      |             |            |          |
| 0.65, 0.72, 0.82, 0.94       1.9, 2.69       nuum         *CO2       -       1.21, 1.57, 4.25       15.0         C2H2       -       1.52, 3.0       7.53       13.7         HCN       -       3.0       -       14.0         C2H6       -       3.4       -       12.1         O3       0.45-       4.7       9.1, 9.6       14.3         O3       0.45-       4.7       9.1, 9.6       14.3         D0       -       2.7, 3.67       7.13       -         *CO       -       1.57, 2.35, -       -       -         D10       -       2.7, 3.67       7.13       -         VCO       -       1.57, 2.35, -       -       -         D2       0.58, 0.69, 0.76, 1.27       -       -       -         NH3       0.55, 0.65, 0.22, 2.5, 2.9, 0.0       -       -       -         PH3       -       4.3       8.9, 10.1       -       -         *CH4       0.48, 0.57       1.65, 2.2, 0       6.5, 7.7       -       -         0.79, 0.86, 3.3       3.3       -       -       -       -         C2H4       -       3.24, 4.5       6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | *H <sub>2</sub> O             | 0.51, 0.57,          | 1.13, 1.38, | 6.2        | conti-   |
| $^{\circ}$ CO2       -       1.21, 1.57, 1.6, 2.03, 4.25       -       15.0         C2H2       -       1.52, 3.0       7.53       13.7         HCN       -       3.0       -       14.0         C2H6       -       3.4       -       12.1         O3       0.45-       4.7       9.1, 9.6       14.3         O3       0.45-       4.7       9.1, 9.6       14.3         O3       0.45-       4.7       9.1, 9.6       14.3         O45       4.7       9.1, 9.6       14.3       -         O45       4.7       9.1, 9.6       14.3       -         PH0       -       2.7, 3.67       7.13       -       -         O2       0.58, 0.69, 0.76, 1.27       -       -       -       -         NH3       0.55, 0.65, 1.5, 2, 2, 2.5, 2.9, 3.0       6.1, 10.5       -       -         PH3       -       4.3       8.9, 10.1       -       -         *CH4       0.48, 0.57, 0.5       1.65, 2.2, 0.5, 7.7       -       -       -         0.6, 0.7, 2.31, 2.37, 0.79       3.34, 4.5       6.8, 7.7, 8.6       -       -         C2H4       -       3.22, 3.34       6.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               | 0.65, 0.72,          | 1.9, 2.69   |            | nuum     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               | 0.82, 0.94           |             |            |          |
| 1.6, 2.03,<br>4.25         1.52, 3.0         7.53         13.7           C2H2         -         3.0         -         14.0           C2H6         -         3.4         -         12.1           O3         0.45-<br>0.75 (the<br>Chappuis<br>band)         4.7         9.1, 9.6         14.3           HDO         -         2.7,3.67         7.13         -           *CO         -         1.57, 2.35,<br>4.7         -         -           02         0.58, 0.69,<br>0.76, 1.27         -         -         -           NH3         0.55, 0.65,<br>0.76, 1.27         1.5, 2,<br>0.93         6.1, 10.5         -           NH3         0.55, 0.65,<br>0.7, 2.31, 2.37,<br>0.6, 0.7, 2.31, 2.37,<br>0.6, 0.7, 2.31, 2.37,<br>0.79, 0.86, 3.3         8.9, 10.1         -           CH <sub>4</sub> 0.48, 0.57.<br>1.65, 2.2, 3.8         7         -         -           CH <sub>3</sub> D         ?         3.34, 4.5         6.8, 7.7,<br>8.6         -         -           CH <sub>3</sub> D         ?         4.5         -         -         -           NQ0         -         4.5         -         -         -           NQ2         -         3.4         6.2, 7.7         13.5         -           H <sub>2</sub> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *CO2                          | -                    | 1.21, 1.57, | -          | 15.0     |
| Lambda is a stress of the second s |                               |                      | 1.6, 2.03,  |            |          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.11                          |                      | 4.25        |            |          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C <sub>2</sub> H <sub>2</sub> | -                    | 1.52, 3.0   | 7.53       | 13.7     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HCN                           | -                    | 3.0         | -          | 14.0     |
| $O_3$ 0.45-<br>0.75 (the<br>Chappuis<br>band)       4.7       9.1, 9.6       14.3         HDO       -       2.7,3.67       7.13       -         *CO       -       1.57, 2.35,<br>4.7       -       - $O_2$ 0.58, 0.69,<br>0.76, 1.27       -       -       -         NH <sub>3</sub> 0.55, 0.65,<br>0.93       1.5, 2,<br>2.25, 2.9,<br>3.0       6.1, 10.5       -         PH <sub>3</sub> -       4.3       8.9, 10.1       -         *CH4       0.48, 0.57,<br>0.6, 0.7,<br>2.31, 2.37,<br>0.79, 0.86,<br>3.3       6.5, 7.7       -         CH <sub>4</sub> D       ?       3.34, 4.5       6.8, 7.7,<br>8.6       -         Cyappe       -       2.5, 3.8       7       -         NO <sub>2</sub> -       4.5       -       -         NO <sub>2</sub> -       3.4       6.2, 7.7       13.5         H <sub>2</sub> -       2.8, 3.9,<br>7.7, 8.5       -       -         NO <sub>2</sub> -       3.4       6.2, 7.7       13.5         H <sub>2</sub> -       -       -       -         H <sub>2</sub> -       -       -       -         NO <sub>2</sub> -       3.4       6.2, 7.7       13.5         H <sub>4</sub> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C <sub>2</sub> H <sub>6</sub> |                      | 3.4         | -          | 12.1     |
| 0.75 (the<br>Chappuis<br>band)         2.7,3.67         7.13         - $^{*}CO$ - $1.57, 2.35,$ -         - $O_2$ $0.58, 0.69,$ -         -         - $O_2$ $0.58, 0.69,$ -         -         - $NH_3$ $0.55, 0.65,$ $1.5, 2,$ $6.1, 10.5$ - $NH_3$ $0.55, 0.65,$ $1.5, 2,$ $6.1, 10.5$ - $PH_3$ - $4.3$ $8.9, 10.1$ -           *CH4 $0.48, 0.57,$ $1.65, 2.2,$ $6.5, 7.7$ - $0.79, 0.86,$ $3.3$ -         -         -           CH_3D         ? $3.34, 4.5$ $6.8, 7.7,$ -           SO <sub>2</sub> -         4         7.3, 8.8         -           N <sub>2</sub> O         - $2.8, 3.9, 7.7, 8.5$ -         -           N <sub>2</sub> O         - $3.4$ $6.2, 7.7$ $13.5$ N <sub>2</sub> O         - $3.4$ $6.2, 7.7$ $13.5$ H <sub>2</sub> - $3.4$ $6.2, 7.7$ $13.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 03                            | 0.45-                | 4.7         | 9.1, 9.6   | 14.3     |
| Chappuns<br>band)         2.7,3.67         7.13         -           *CO         -         1.57, 2.35,<br>4.7         -         -           O2         0.58, 0.69,<br>0.76, 1.27         -         -         -           NH3         0.55, 0.65,<br>0.93         1.5, 2,<br>2.25, 2.9,<br>3.0         6.1, 10.5         -           PH3         -         4.3         8.9, 10.1         -           *CH4         0.48, 0.57,<br>0.6, 0.7,<br>2.31, 2.37,<br>0.79, 0.86,         1.65, 2.2,<br>3.34, 4.5         6.8, 7.7,<br>8.6         -           CH3D         ?         3.34, 4.5         6.8, 7.7,<br>8.6         -         -           SO2         -         4         7.3, 8.8         -         -           N2O         -         3.4         6.2, 7.7         13.5         -           N2O         -         3.4         6.2, 7.7         13.5         -           N2O         -         3.4         6.2, 7.7         13.5         -           Hg <sup>+</sup> -         1.083         -         -         -           N2O         -         3.4         6.2, 7.7         13.5         -           Hg <sup>+</sup> -         1.083         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | 0.75 (the            |             |            |          |
| band)         2.7,3.67         7.13         -           *CO         -         1.57, 2.35, 4.7         -         - $O_2$ 0.58, 0.69, 0.76, 1.27         -         -         -           NH <sub>3</sub> 0.55, 0.65, 0.55, 0.22, 2.9, 0.30         -         -         -           PH <sub>3</sub> -         4.3         8.9, 10.1         -           *CH <sub>4</sub> 0.48, 0.57, 0.65, 0.7, 2.31, 2.37, 0.79, 0.86, 0.7, 0.79, 0.86, 0.7, 0.79, 0.86, 0.7, 0.79, 0.86, 0.7, 0.79, 0.86, 0.7, 0.79, 0.86, 0.7, 0.79, 0.86, 0.7, 0.79, 0.86, 0.7, 0.79, 0.86, 0.7, 0.79, 0.86, 0.7, 0.79, 0.86, 0.7, 0.79, 0.86, 0.7, 0.79, 0.86, 0.7, 0.79, 0.86, 0.7, 0.79, 0.86, 0.7, 0.79, 0.86, 0.7, 0.79, 0.86, 0.7, 0.79, 0.86, 0.7, 0.79, 0.86, 0.7, 0.79, 0.86, 0.7, 0.79, 0.86, 0.7, 0.79, 0.86, 0.7, 0.79, 0.86, 0.7, 0.79, 0.86, 0.7, 0.79, 0.86, 0.7, 0.79, 0.86, 0.7, 0.79, 0.86, 0.7, 0.79, 0.86, 0.7, 0.79, 0.86, 0.7, 0.79, 0.86, 0.7, 0.79, 0.86, 0.7, 0.76, 0.86, 0.7, 0.76, 0.46, 0.7, 0.76, 0.46, 0.76, 0.7, 0.76, 0.46, 0.76, 0.7, 0.76, 0.46, 0.76, 0.7, 0.76, 0.46, 0.76, 0.7, 0.76, 0.46, 0.76, 0.7, 0.76, 0.46, 0.76, 0.7, 0.76, 0.46, 0.76, 0.7, 0.46, 0.76, 0.7, 0.46, 0.76, 0.7, 0.76, 0.46, 0.76, 0.7, 0.76, 0.46, 0.76, 0.7, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0                                                                                                                                                                                                                                                                                                                                   |                               | Chappuis             |             |            |          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | upo                           | band)                | 0 7 9 67    | 7.19       |          |
| $1.57, 2.35, 4.7$ -       - $0_2$ $0.58, 0.69, 0.76, 1.27$ -       - $NH_3$ $0.55, 0.65, 0.22, 2.9, 3.0$ 6.1, 10.5       - $PH_3$ -       4.3       8.9, 10.1       -         *CH4 $0.48, 0.57, 0.65, 0.7, 2.31, 2.37, 0.6, 0.7, 0.231, 2.37, 0.79, 0.86, 3.3$ 6.5, 7.7       -         CH_3D       ?       3.34, 4.5       6.8, 7.7, -       -         SO2       -       4       7.3, 8.8       -         NQ2       -       2.8, 3.9, 7.7, 8.5       -         NO2       -       2.4, 5       -       -         NO2       -       2.12       -       -         NQ2       -       3.4       6.2, 7.7       13.5         H2       -       2.12       -       -         NQ2       -       3.4       6.2, 7.7       13.5         H2       -       1.083       -       -         NO2       -       3.4       6.2, 7.7       13.5         H2       -       -       -       -       -         NO2       -       3.4       6.2, 7.7       13.5       -         H2 </td <td>*00</td> <td>-</td> <td>2.7,3.07</td> <td>1.13</td> <td>-</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *00                           | -                    | 2.7,3.07    | 1.13       | -        |
| $0_2$ $0.58, 0.69, 0.76, 1.27$ $  -$ NH <sub>3</sub> $0.55, 0.65, 0.93$ $1.5, 2, 2.25, 2.9, 3.0$ $6.1, 10.5$ $-$ PH <sub>3</sub> $ 4.3$ $8.9, 10.1$ $-$ *CH <sub>4</sub> $0.48, 0.57, 0.65, 2.2, 0.65, 7.7$ $6.5, 7.7$ $ 0.6, 0.7, 2.31, 2.37, 0.79, 0.86, 3.3$ $6.8, 7.7, 8.6$ $-$ CH <sub>3</sub> D $?$ $3.34, 4.5$ $6.8, 7.7, 8.6$ $-$ CH <sub>3</sub> D $?$ $3.34, 4.5$ $6.8, 7.7, 8.6$ $-$ No <sub>2</sub> $ 2.5, 3.8 \dots$ $7$ $-$ NO <sub>2</sub> $ 2.8, 3.9, 7.7, 8.5$ $ -$ NO <sub>2</sub> $ 2.4, 3.4$ $6.2, 7.7$ $13.5$ H <sub>2</sub> $ 2.0, 3.4.5$ $ -$ NO <sub>2</sub> $ 3.4$ $6.2, 7.7$ $13.5$ H <sub>2</sub> $ 2.0, 3.4.5$ $ -$ NO <sub>2</sub> $ 3.4$ $6.2, 7.7$ $13.5$ H <sub>3</sub> $-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .00                           | -                    | 1.57, 2.35, | -          | -        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                             | 0.58.0.60            | 4.7         |            |          |
| NH3 $0.55, 0.65, 0.93$ $1.5, 2, 2.9, 3.0$ $6.1, 10.5$ $-$ PH3       - $4.3$ $8.9, 10.1$ $-$ *CH4 $0.48, 0.57, 0.6, 0.7, 2.31, 2.37, 0.79, 0.86, 3.3$ $6.5, 7.7$ $-$ CH3D       ? $3.34, 4.5$ $6.8, 7.7, 8.6$ $-$ CH4D       ? $3.34, 4.5$ $6.8, 7.7, 8.6$ $-$ C2H4 $ 3.22, 3.34$ $6.9, 10.5$ $-$ H2S $ 2.5, 3.8 \dots$ $7$ $-$ SO2 $ 4$ $7.3, 8.8$ $-$ NQ0 $ 2.8, 3.9, 7.7, 8.5$ $-$ NO2 $ 3.4$ $6.2, 7.7$ $13.5$ H2 $ 2.0, 3-4.5$ $ -$ H2 $ 2.12$ $ -$ H3 $ 2.0, 3-4.5$ $ -$ H4 $ 1.083$ $ -$ H4 $ 1.083$ $ -$ H6 $    -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 02                            | 0.58, 0.69,          | -           |            | <u> </u> |
| NH3       0.33, 0.35, 0.35, 0.43, 0.5, 2.2, 0.4, 10.3       0.41, 10.3 $\sim$ 9H3       -       4.3       8.9, 10.1       -         *CH4       0.48, 0.57, 0.65, 0.7, 0.6, 0.7, 0.31, 0.37, 0.79, 0.86, 0.33       6.5, 7.7       -         0.79, 0.86, 0.7, 0.79, 0.86, 0.7, 0.79, 0.86, 0.33       3.34, 4.5       6.8, 7.7, -       -         C2H4       -       3.22, 3.34       6.9, 10.5       -         H2S       -       2.5, 3.8       7       -         SO2       -       4       7.3, 8.8       -         N2O       -       2.8, 3.9, 7.7, 8.5       -         H2       -       2.12       -       -         H2       -       2.12       -       -         NO2       -       3.4       6.2, 7.7       13.5         H2       -       1.083       -       -         H4       -       1.083       -       -         H4       -       1.2       -       -         H5       -       -       -       -         H2       -       -       -       -       -         H2       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NH.                           | 0.55 0.65            | 15 9        | 61 10 5    |          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NH3                           | 0.03, 0.05,          | 1.0, 2,     | 0.1, 10.5  |          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               | 0.95                 | 2.20, 2.9,  |            |          |
| *CH4       0.48, 0.57.<br>0.6, 0.7, 2.31, 2.37,<br>0.79, 0.86,       1.65, 2.2,<br>3.34, 4.5       6.5, 7.7       -         CH <sub>3</sub> D       ?       3.34, 4.5       6.8, 7.7,<br>8.6       -       -         C2H4       -       3.22, 3.34       6.9, 10.5       -         H <sub>2</sub> S       -       2.5, 3.8       7       -         SO <sub>2</sub> -       4       7.3, 8.8       -         N <sub>2</sub> O       -       2.8, 3.9,<br>4.5       7.7, 8.5       -         NO <sub>2</sub> -       3.4       6.2, 7.7       13.5         H <sub>2</sub> -       2.12       -       -         H <sup>+</sup> <sub>3</sub> -       2.0, 3-4.5       -       -         He       -       1.083       -       -       -         *K       0.76       -       -       -       -         VO       0.4-1       1-3.5       -       -       -         VO       0.4-1       1-2.5       -       -       -         FeH       0.6-1       1-2       -       -       -         TiO       0.4-1       1-1.6       -       -       -         QU       0.4-1       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PH.                           |                      | 4.3         | 8 9 10 1   |          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *CH.                          | 0.48 0.57            | 1.65 2.2    | 65 77      |          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CIII                          | 0.6 0.7              | 2.31. 2.37  | 0.0, 1.1   | C        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               | 0.79 0.86            | 3.3         |            |          |
| $C_2H_4$ -       3.22, 3.34       6.9, 10.5       - $H_2S$ -       2.5, 3.8       7       - $SO_2$ -       4       7.3, 8.8       - $N_2O$ -       2.8, 3.9,       7.7, 8.5       - $NO_2$ -       3.4       6.2, 7.7       13.5 $H_2$ -       2.12       -       - $H_3^+$ -       2.0, 3-4.5       -       - $H_3^+$ -       2.0, 3-4.5       -       - $He$ -       1.083       -       -         *Na       0.589       1.2       -       -         *K       0.76       -       -       -         TiO       0.4-1       1-3.5       -       -         VO       0.4-1       1-2.5       -       -         TiH       0.6-1       1-2       -       -         TiH       0.4-1       1-1.6       -       -         Cloud/       yes       possible       silicates,       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CH <sub>2</sub> D             | 2                    | 3 34 4.5    | 68 77      |          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Chigo                         |                      | 0.04, 410   | 8.6        |          |
| $H_2S$ -       2.5, 3.8       7       - $SO_2$ -       4       7.3, 8.8       - $N_2O$ -       2.8, 3.9,       7.7, 8.5       - $NO_2$ -       3.4 <b>6.2</b> , 7.7       13.5 $H_2^+$ -       2.12       -       - $H_3^+$ -       2.0, 3-4.5       -       - $H_3^+$ -       1.083       -       -         *Na       0.589       1.2       -       -         *K       0.76       -       -       -         TiO       0.4-1       1-3.5       -       -         VO       0.4-1       1-2.5       -       -         TiH       0.6-1       1-2       -       -         Cloud/       yes       possible       silicates,       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C <sub>2</sub> H <sub>4</sub> | -                    | 3.22. 3.34  | 6.9, 10.5  |          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H <sub>2</sub> S              | -                    | 2.5. 3.8    | 7          |          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SO <sub>2</sub>               | -                    | 4           | 7.3.8.8    |          |
| 4.5 $NO_2$ -       3.4       6.2, 7.7       13.5 $H_2$ -       2.12       -       - $H_3^+$ -       2.0, 3-4.5       -       - $H_8^+$ -       1.083       -       -         *Na       0.589       1.2       -       -         *K       0.76       -       -       -         TiO       0.4-1       1-3.5       -       -         VO       0.4-1       1-2.5       -       -         FeH       0.6-1       1-2       -       -         TiH       0.4-1       1-1.6       -       -         Cloud/       yes       possible       silicates,       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N <sub>2</sub> O              | -                    | 2.8, 3.9,   | 7.7. 8.5   | -        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               |                      | 4.5         |            |          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NO <sub>2</sub>               | -                    | 3.4         | 6.2, 7.7   | 13.5     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H <sub>2</sub>                | -                    | 2.12        | -          | -        |
| He         -         1.083         -         -           *Na         0.589         1.2         -         -           *K         0.76         -         -         -           TiO         0.4-1         1-3.5         -         -           VO         0.4-1         1-2.5         -         -           FeH         0.6-1         1-2         -         -           TiH         0.4-1         1-1.6         -         -           Cloud/         yes         possible         silicates,         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $H_3^+$                       | -                    | 2.0, 3-4.5  | -          | -        |
| *Na 0.589 1.2<br>*K 0.76<br>TiO 0.4-1 1-3.5<br>VO 0.4-1 1-2.5<br>FeH 0.6-1 1-2<br>TiH 0.4-1 1-1.6<br>Rayleigh 0.4-1<br>Cloud/ yes possible silicates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | He                            | -                    | 1.083       | -          | -        |
| *K 0.76<br>TiO 0.4-1 1-3.5<br>VO 0.4-1 1-2.5<br>FeH 0.6-1 1-2<br>TiH 0.4-1 1-1.6<br>Rayleigh 0.4-1<br>Cloud/ yes possible silicates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | *Na                           | 0.589                | 1.2         | -          | -        |
| TiO         0.4-1         1-3.5         -         -           VO         0.4-1         1-2.5         -         -           FeH         0.6-1         1-2         -         -           TiH         0.4-1         1-1.6         -         -           Rayleigh         0.4-1         -         -         -           Cloud/         yes         possible         silicates,         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | *K                            | 0.76                 | -           | -          | -        |
| VO         0.4-1         1-2.5         -         -           FeH         0.6-1         1-2         -         -           TiH         0.4-1         1-1.6         -         -           Rayleigh         0.4-1         -         -         -           Cloud/         yes         possible         silicates,         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TiO                           | 0.4-1                | 1-3.5       | -          | -        |
| FeH         0.6-1         1-2         -         -           TiH         0.4-1         1-1.6         -         -           Rayleigh         0.4-1         -         -         -           Cloud/         yes         possible         silicates,         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | VO                            | 0.4-1                | 1-2.5       | -          | -        |
| TiH         0.4-1         1-1.6         -         -           Rayleigh         0.4-1         -         -         -           Cloud/         yes         possible         silicates,         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FeH                           | 0.6-1                | 1-2         | -          | -        |
| Rayleigh 0.4-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TiH                           | 0.4-1                | 1-1.6       | -          | -        |
| Cloud/ yes possible silicates, -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Rayleigh                      | 0.4-1                | -           | -          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cloud/                        | yes                  | possible    | silicates, | -        |
| haze etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | haze                          | 100 A                |             | etc.       |          |
| Η Ηα 0.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H Ha                          | 0.66                 |             |            |          |
| Η Ηβ 0.486                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $H H\beta$                    | 0.486                |             |            |          |
| Ca 0.8498,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ca                            | 0.8498,              |             | -          | -        |
| 0.8542,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | 0.8542,              |             |            |          |

Tinetti et al. (2012)

exoELT 2014 @ ESO Garching

Method

- MOS were not conceived w/ exoplanets in mind so far...
- large apertures => success of large-slit mask MOS
- better IFUs & active positioning should be considered
- forthcoming feedback from the ExTrA project





Transmission spectra for a single transit of an ocean planet of 2 Rearth transiting a 0.33-Rsun M dwarf



model thanks to D. Ehrenreich







