STATISTICAL ANALYSIS OF EXOPLANET POPULATIONS FROM LARGE-SCALE DIRECT IMAGING SURVEYS

Beth Biller, Markus Feldt, Maria Lenius, SPHERE WP4 Mike Liu, Zahed Wahhaj, Eric Nielsen, and the NICI Campaign team

~10 Directly Imaged Exoplanets...

Lagrange et al. 2008,2010

July 13, 2010 Ks-band

Marois et al. 2008,2010

November 1, 2009 L'-band

0.5"

Out of 100s of stars surveyed to quite deep contrasts...

Current Survey Statistics already place strong constraints Biller et al. 2013

Strongest Constraint on Planet Fraction to date from 78 NICI Campaign stars:

<8% host 1-20 Mjup planets at semi-major axes of 10-150 AU (95% confidence level, COND models)

Biller et al. 2013

Upcoming Instruments SPHERE @ VLT GPI @ Gemini

Project 1640

NIRSUR with SPHERE @ VLT - predicted start in 2015

Simulated Surveys for SPHERE NIRSUR

Monte Carlo simulation following the approach of Nielsen & Close, 2010 and Bonavita et al. 2012.

Assumed Planet Distribution $dN/dm \propto m^{\alpha}, \alpha = -0.63$ $dN/da \propto a^{\beta}, \beta = -1.16$ until cutoff radius

Cumming et al. 2008 found α ~ -0.63 and β ~ -1.16 for RV planets out to ~8 AU

R(a, M | α , cutoff, β , C) = $CM^{\beta}a^{\alpha}$ (until cutoff, where C is a normalization factor related to planet frequency F)

Normalize to known RV planets

Fischer and Valenti 2005 find a planet frequency of 3.94% for planets with:

- Mass 1-13 Mjup
- separations 0.3 2.5 AU
- stellar mass: 0.7 1.6 Msun
- [Fe/H]: -0.5 +0.5

Mass-Scaled Planet Distribution

$dN/da \propto a^{\beta}$ until cutoff radius

Cumming et al. 2008 found α ~ -0.63 and β ~ -1.16 for RV planets out to ~8 AU

Predicted # of detections vs. cutoff

SMA Cutoff	Unscaled	Mass- Scaled
20 AU	17 <u>+</u> 4	27 <u>+</u> 6
30 AU	26 <u>+</u> 7	46 <u>+</u> 3
40 AU	34 ± 5	57 ± 5
50 AU	43 <u>+</u> 4	66 ± 5

Bayesian retrieval of simulation parameters

Current surveys are the prior for future surveys

Constraints from Current + Future Surveys

400 star simulated NIRSUR

78 MG stars from Biller et al. 2013

Bayesian retrieval of simulation parameters

Conclusion

Strongest constraints will likely continue to be for: planet fraction F

Bayes' Theorem

Posterior PDF

prob(model|data,I) ∝ prob(data|model,I) x prob(model|I)

Likelihood Function

Beth Biller February 4, 2014

Prior

Same thing, Gaussian priors on α and β

Constraints on Cutoff

Constraints on Cutoff- Gaussian Priors

