HETDEX: AGN-galaxy clustering at 2<z<3.5

Andreas Schulze

Kavli Institute for Mathematics and Physics of the Universe (Kavli IPMU) The University of Tokyo

Workshop "Clustering Measurements of Active Galactic Nuclei" Garching, Germany, 14-18 July 2014

Hobby-Eberly Telescope Dark Energy Experiment

- \Rightarrow blind, large-scale spectroscopic survey with VIRUS at HET
- \Rightarrow 300 square degrees (60 square degrees with spectra) over 3 years
- \Rightarrow about 0.75 million redshifts from 1.9 < z < 3.5 (Ly α emitters)
- \Rightarrow about 1 million redshifts from 0 < z < 0.5 (OII emitters)
- \Rightarrow Timeline: 2015-2017

Hobby-Eberly Telescope (HET)

- McDonald Observatory, Texas
- fixed elevation-axis design
- segmented primary mirror 11.1 x 9.8 m (9.2 m effective aperture)

- ⇒ HET upgraded to 22 arcmin field of view
 ⇒ in progress
 ⇒ new instrument VIRUS
 - \Rightarrow construction complete by end of 2014

VIRUS instrument

Visible Integral-Field Replicable Unit Spectrograph (VIRUS)

- 75 IFUs feeding 150 spectrographs
- each IFU contains 448 fibers (33 600 spectra per shot)
- 3500 5500 Å at R ${\sim}750$
- Line flux limit: 3.5×10^{-17} erg/cm²/s and $m_{\rm AB} \sim 22$

< 47 ▶

Survey Design

- \Rightarrow Spring field: TAN 42x7 deg² with AS (YJHK) all ak 2 BC ARGIS 1/4.5 fill factor \$ centered on 240 230 220 210 200 190 180 170 160 RA---TAN 13hr. +53dea \Rightarrow Fall field: ŝ -TAN 28x5 deg² DEC--centered on WISE (3-22 micron) all sky LAS (YJHK) all sky 1.5hr, 0deg -10 60 50 40 30 2n 10 ò -10 -20
 - ⇒ Fall field with ancillary data in optical (grizy, DES), near-IR (K, NEWFIRM), mid-IR (Spitzer-SHELA), far-IR (Herschel-HeRS)

RA---TAN

Constraining Dark Energy with HETDEX

 \Rightarrow measure power spectrum of \sim 800,000 LAEs

 \Rightarrow measure H(z = 2.3) and $D_A(z = 2.3)$ to 0.9%

- \Rightarrow constrain evolution of dark energy (w_a)
- \Rightarrow most precise measurements at z > 2

AGN in HETDEX

fully blind IFU spectroscopic survey data from HETDEX enables multitude of ancillary science, including AGN

- \Rightarrow no preselection required
- \Rightarrow detection through characteristic emission lines in spectra
 - type-2 AGN hard to identify ([Ne V]3426 line, X-ray, mid-IR, ...)
 - type-1 (broad line) AGN easy to distinguish from LAEs and [OII] emitters
 - \Rightarrow several lines detectable (MgII, CIII], CIV, Ly α) up to z = 3.5
 - \Rightarrow unambiguous redshift identification at z > 1.3

simulated type 1 AGN spectra

 \Rightarrow z = 3

Andreas Schulze (Kavli IPMU)

HETDEX AGN selection

Predicted HETDEX AGN selection function

• • • • • • • • • • • • •

-

- \Rightarrow excellent sample for statistical studies of type 1 AGN
 - AGN luminosity function and evolution from 0 < z < 3.5
 - Evolution of active BH mass function and Eddington ratio distribution function
 - AGN-Galaxy clustering

AGN Luminosity function

AGN Luminosity function constrain faint end of AGN LF between z = 2 and z = 3.5 down to $g \sim 24$, without preselection

A D M A A A M M

predicted AGN LF for HETDEX main survey (SDSS, VVDS, HETDEX)

Black hole mass and Eddington ratio distribution function

z = 1.6z = 0.0 \Rightarrow *M*_{BH} estimates from • € % broad lines up to z = 2.5 $\log M_{\bullet} [M_{\odot}]$ $\log \lambda$ M(z=2) [mag \Rightarrow determine AGN $\log M_{\bullet}$ $\log L_{\rm Bol}$ $\log \lambda$ evolution as function of $M_{\rm BH}$ and $L_{\rm bol}/L_{\rm Edd}$ $\log \Phi$ \Rightarrow probe BH mass 7^{1.5} downsizing between Schulze+(in prep.) 0 < z < 2.5based on SDSS+VVDS+zCOSMOS

HETDEX

AGN-Galaxy clustering

- ⇒ within 1.9 < z < 3.5 HETDEX will probe 10^4 AGN and 10^6 galaxies (LAEs) in the same volume
- \Rightarrow excellent sample for AGN-galaxy clustering at z > 2
- ⇒ construct AGN-LAE 2-point cross-correlation function (100× increase in power over AGN auto-correlation function)

Andreas Schulze (Kavli IPMU)

AGN-Galaxy clustering

• large scale clustering:

- ⇒ AGN bias factor
- \Rightarrow relation to DM halos (typical DM halo masses)

• small scale clustering:

- ⇒ reach below 1/h Mpc separation => nonlinear regime
- ⇒ Halo occupation distribution (HOD) => constrain AGN fueling and feedback
- good statistics to bin in AGN luminosity, BH mass,...
- \Rightarrow HETDEX will provide the precise probe of AGN-galaxy clustering at z > 2

.

AGN-Galaxy clustering: The $M_{\rm Halo} - M_{\rm BH}$ relation

- $M_{\rm Halo}$ from clustering
- *M*_{BH} from spectra
- $\Rightarrow M_{
 m Halo} M_{
 m BH}$ relation at 2 < z < 2.5

Current estimate at 1.5 < z < 3 based on small samples

Adelberger & Steidel (2005)

Conclusions

- HETDEX will start first half 2015
- 3 year, massive, blind spectroscopic survey in two fields over 300+150 deg²
- powerful AGN survey (20000 type 1 AGN in main field)
- AGN demographics: AGNLF, BH mass and Eddington ratio distribution function, AGN-galaxy clustering
- within 1.9 < z < 3.5 10⁴ AGN and 10⁶ galaxies in the same volume
- \Rightarrow HETDEX will provide unique probe of AGN-galaxy clustering at z > 2