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  Introduction 
 Motivation 
 A semi-analytic model 
 Results 
◦ Quasar number density evolution 
◦ Quasar-galaxy cross-correlation function 
◦ Quasar bias 

  Summary and future study	
 



  AGN downsizing : the space densities of fainter 
AGNs peak at lower redshifts than those of 
brighter AGNs.  

Ikeda et al. (2012)	
 Ueda et al. (2003)	
 

Optical 	
 X-ray 	
 



 QSO clustering 
◦  Shen et al. (2009) : 10 per 

cent brightest quasars of their 
sample are clustered stronger 
than the fainter quasars 
◦ Other studies (for usually 

observed luminosity ranges): 
the clustering strength does 
not depend significantly on 
quasar luminosity. 	
 

Shen et al. (2009)	
 



  Bonoli et al. 2009 
◦  Black hole accretion and quasar activity are 

triggered by galaxy mergers. 
◦  The masses of host dark matter haloes are ~1012 

Msun/h and are almost independent of redshift and 
quasar luminosity. 

  Fanidakis et al. 2013 
◦ Other accretion modes : disc instabilities, hot-

halo mode 
◦  The masses of host dark matter haloes of X-ray 

AGN are greater than ~1012.5 Msun. 



  In this study, we investigate whether the 
observed trends of QSO clustering can 
be explained using our semi-analytic 
model, νGC, of galaxy and SMBH/QSO 
formation based on a hierarchical 
clustering scenario. 

 We present the large-scale QSO 
clustering and its evolution from z=4 to 
z=0.5 for a wide luminosity range.	
 



  Large box size N-body simulation 
◦  Box size : 400 Mpc 
◦  Number of particles : 20483 

◦  Minimum DM halo mass : 8.79×109 Msun/h 
◦  Planck cosmology 

  Galaxy formation model (Nagashima et al. 2005) 
◦  Gas cooling, star formation, supernova feedback, 

galaxy mergers 
◦  Our model reproduce various observations including 

galaxy luminosity functions, galaxy number counts, the 
cosmic star formation history. 

  SMBH/QSO formation model (Enoki et al. 2003)	
 

Our semi-analytic model : 	
 

€ 

Ω0 = 0.31,ΩΛ = 0.69, h = 0.68



1.  When host galaxies merge, the pre-existing SMBHs in 
the progenitors immediately coalesce. 

2.  During a major merger of galaxies, a certain fraction 
of the cold gas that is proportional to the total mass 
of newly formed stars at starburst accretes onto the 
SMBH.	
 

Assumptions	
 

€ 

Macc = fBHM*, burst

is fixed by matching the observed                       relation 	
 

€ 

Mbulge −MBH

We adopted 	
 

€ 

fBH = 0.0067
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QSO B-band luminosity	
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: the radiative efficiency in the B-band 

€ 

tlife(z)∝ tdyn ∝1 ρvir€ 

εB
: QSO lifetime scale 

€ 

tlife
scales with the dynamical time scale of the host galaxy,	
 

€ 

tlife

€ 

εB , tlife(z = 0) are fixed by matching the observed B-band  
Luminosity function of QSO at z=2.	
 

€ 

εB = 0.00331
tlife(z = 0) =15Myr
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 Our model naturally reproduces the 
observed trend of the downsizing.	
 

Enoki et al. submitted	
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  Galaxy auto-correlation function 

◦  e.g. Davis & Peebles 1983 

  QSO-galaxy cross-correlation function 
◦  The estimator in Coil et al. 2007 

€ 

ξ(r) =
DD(r)
DR(r)

−1

D: Galaxies, R: Random data 
<DD(r)>: the average number of galaxies 
around a galaxy as a function of distance r 
<DR(r)>: the average number of random 
objects around a galaxy as a function of 
distance r 

€ 

ξ(r) =
QG
QR

−1

Q: QSOs, G: Galaxies 
R: Random data 
QG: the average number of galaxies around a 
quasar as a function of distance r 
QR: the average number of random galaxies 
around a quasar as a function of distance r 
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  Quasar-galaxy cross-correlation functions do not 
have significant dependence on quasar luminosity. 

  This result is consistent with observations and 
Bonoli et al. (2009). 
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Galaxy sample: MB-5log(h)<-20	
 



  In our model, quasar activity is triggered by galaxy mergers. 
  Galaxy merger rate peaks in galaxy group scale haloes. 
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€ 

~ 1012 −1013Msun

€ 

~ 5 ×1011 − 5 ×1012Msun

€ 

~ 1011 −1012Msun

Host dark matter halo masses are up to ~1013 Msun.	
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Then, 	
 

€ 

bQ =
bQG
2

bG

€ 

bQ =
ξQ (r)
ξDM (r)

Assuming a linear bias,	
 

€ 

ξQG = ξQξG

€ 

bQG
2 = bQbGi.e.	
 

€ 

bG : galaxy linear bias,	
 where	
 

€ 

bQG =
ξQG (r)
ξDM (r)

We calculate the bias of the 
QSOs as a function of distance r.	
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z=2	
 



  z<~2 : almost independent on radius 
  z=4 : highly dependent on radius 	
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We simply average the quasar biases over all radial bins. 	
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•  The quasar bias is an increasing function of redshift. 
•  At z=4, the brighter sample has a bias higher than the 

fainter sample.	
 



  We have explored the clustering properties of quasars using 
our updated semi-analytic model. 

  For a wide luminosity range (-20 > MB-5log(h) > -25), host 
dark matter haloes have similar mass at each redshift. 
◦   -> similar clustering 

  Our results are consistent with observations. 
  Our results are also consistent with Bonoli et al. (2009). 
◦  Luminosity independence of quasar clustering seems to be a 

generic prediction of galaxy merger triggered models. 
•  At z=4, the brighter sample has a bias higher than the fainter 

sample.	
 
  Our model also explain AGN downsizing qualitatively. 
  We prepare a cosmological N-body simulation with 
◦  Box size : 800 Mpc 
◦  Number of particles : 40963 

◦  -> We will derive QSO auto-correlation function.	
 


