Clustering of Star-forming Galaxies and connections with AGN activity

MANUELA MAGLIOCCHETTI IAPS-INAF

Collaborators: Herschel PEP team (D.Lutz, P.Popesso, D.Rosario et al.) & A.Lapi, M.Negrello, G.De Zotti., G.Danese

Credits for image: Hi-GAL

Rationale: Why are star-forming galaxies important for AGN?

Remarkable similarity between cosmic history of star formation and black hole accretion.

Plot from Zeng et al. 2009. BH accretion history from Hopkins+2007 AGN LF assuming ε =0.1 for radiation efficiency. BH accretion curve shifted upwards by factor ~2000.

Intrinsic and very tight connection between star-forming phase of a galaxy and its AGN phase.

<u>Outline</u>

-Clustering of star-forming galaxies: the Herschel/FIR view

-Clustering of star-forming galaxies: the multi-wavelength view

- Possible scenarios for evolution into galaxies/AGN

Clustering of star-forming galaxies: the Herschel view

The GOODS-S field as seen by PEP

Concentrate on COSMOS, EGS and GOODS-S as either wide enough or deep enough to ensure statistically meaningful clustering measurements

<u>Clustering of star-forming galaxies with Herschel: characteristics of the fie</u>

<u>COSMOS</u>: 80% completeness @100µm 8 mJy <u>EGS</u>: 80% completeness @ 100µm 5 mJy <u>GOODS-S</u>: 80% completeness @100µm 2 mJy

Magliocchetti+ 2013

CLUSTERING PROPERTIES OF HERSCHEL-SELECTED GALAXIES

ro and Mhalo increase for decreasing fluxes

THE CLUSTERING PROPERTIES OF HERSCHEL-SELECTED GALAXIES II

Galaxies at z~2 are 10 times more strongly clustered than the whole GOODS-S (and also COSMOS and EGS) sample MALMQUIST BIAS (i.e. luminosity dependent) EFFECT?

THE CLUSTERING PROPERTIES OF FIR-SELECTED GALAXIES

Consider clustering measurements of FIR sources selected at 60µm rest frame All PEP galaxies with comparable SFR≥100 $M_{sun}/yr \rightarrow \underline{minimization of bias effects}$ Relevant quantities plotted as a function of median z of survey

DESPITE SIMILAR SELECTION CRITERIA SOURCES @ z~2 ARE A FACTOR 3 MORE CLUSTERED THAN LOCAL, z<1 COUNTERPARTS. REFLECTED IN EVOLUTION OF HALO MASS WHICH INCREASES FACTOR ~10² BETWEEN z~1 AND z~2

THE CLUSTERING PROPERTIES OF RAPIDLY STAR-FORMING SYSTEMS AT LOW AND HIGH Z

CONSIDER CLUSTERING MEASUREMENTS OF <u>ALL</u> SF GALAXIES AVAILABLE IN THE LITERATURE

Galaxies selected at all z only on the basis of their bolometric luminosity/SFR. Minimum 30 ≤SFR_{min}≤ a few 10³ M_{sun}/yr.

Data homogenized to correct for cosmology and γ dependence

Groups with same colour-coding selected at same rest-frame frequency

Blue: UV selection (SFR_{min} ~ a few 10¹ M_{sun}/yr) Green: mid-IR selection (SFR_{min}~a few 10³ M_{sun}/yr) Magenta: BzK selection (SFR_{min}~[30-100] M_{sun}/yr) Black: sub-mm selection (SFP ~ [60-900] M /yr)

Irrespective of the selection technique and only very mildly depending on the SFR, clustering lengths of <u>ALL</u> very active star-forming galaxies present sharp increase from ~ 5 Mpc to ~15-20 Mpc (> factor 3) when moving from $z \le 1$ to $z \ge 2$.

IS THAT AN EXPECTED EFFECT DUE TO INCREASE OF BIAS WITH Z AT CONSTANT MASS?

GALAXIES WHICH ACTIVELY FORM STARS AT HIGH z ARE NOT THE SAME POPULATION WE OBSERVE IN THE MORE LOCAL UNIVERSE. VIGOROUS STAR FORMATION IN THE EARLY UNIVERSE IS HOSTED BY VERY MASSIVE STRUCTURES, WHILE FOR $z \le 1$ A COMPARABLE ACTIVITY IS ENCOUNTERED IN MUCH SMALLER SYSTEMS \rightarrow <u>DOWNSING (M_{hale} propto z)</u>

WHAT HAPPENS TO HIGH-z STAR-FORMING GALAXIES?

- Space densities of SF galaxies @ z~2 indicate the rapid star-forming phase is very common amongst massive galaxies (~ 1 out of 2).
- Estimate T_{SF}~1 Gyr (see also Granato+ 2004; Lapi+ 2006 model).
- <u>Merging excluded as dominant trigger of rapid SF phase as either too</u> low masses or too short T_{SF} (e.g. Baugh+ 2005: Narayanan+2009)

For typical SFR~300 M_{sun}/yr at the end of phase galaxy with M_* ~3 $10^{11} M_{sun}$ \rightarrow look for clustering properties of low-z passive galaxies with very high M_*

-High-z points: star-forming galaxies -z≤1.5 points : early type galaxies with M*~[10¹¹-10¹²] M_{sun}

Halo masses ~[$10^{13}-10^{14}$] M_{sun} \rightarrow \rightarrow perfect agreement with high-z values

WHERE DO AGN FIT IN THIS SCENARIO?

AGN vs Star-forming Galaxies: the X-ray band

Remarkable agreement between clustering properties of high-z SFlow-z passive galaxies and those of <u>X-ray selected</u> AGN. High SFR SFG \rightarrow X-ray AGN \rightarrow high M* passive?

AGN vs Star-forming Galaxies: the radio band

Clustering properties of relatively local radio galaxies still compatible (although on the high side) with those of intense SF galaxies at $z>^{-1.5}$. High SFR SFG \rightarrow radio galaxies \rightarrow group environment?

CONCLUSIONS

Star forming galaxies at high and low redshifts are two different populations.

Low-z (z<~1) intense star formation takes place in small galaxies (M_{DMH}~10^{11.5} M_{sun}) over long timescales. Only a fraction of virialized halos will host the SF event and such a fraction decreases for decreasing redshifts

The same intense star formation activity (SFR>~ 30 M_{sun}/yr) at z>~1.5 takes place in very massive galaxies (M_{DMH} ~10^{13.5} M_{sun}) on relatively short timescales (T_{SF} ~1 Gyr).

It is a very common event: about 1 out of 2 galaxies at z=2 is found in the rapid star forming stage.

At z<~1.5-2 high SFR sources evolve in passive galaxies with M*~10¹¹-10¹² M_{sun}

1.0

Tantalizing resemblance between clustering properties of intense SF galaxies at z>~1.5 and of X-ray (and also possible radio) selected AGN at all z point towards evolutionary connection between these populations.

What about optically selected QSOs?

<u>Completely off topic (but not quite): caution when</u> <u>associating radio sources to 'dead' ellipticals as strong</u> <u>function of z!</u>

<u>Powerful radio sources are more likely to be FIR emitters at earlier epochs</u> <u>FIR emission entirely due to star-forming processes</u>