

eROSITA/SRG All-Sky Survey (eRASS): New era of large-scale structure studies with (X-ray selected) AGN

Ву	Alex Kolodzig (MPA)
Collaborators	Marat Gilfanov (MPA,IKI), Gert Hütsi (MPA), Rashid Sunyaev (MPA,IKI)
Publications	Kolodzig et al. 2013b, A&A, 558, 90 (ArXiv : 1305.0819) Hüsti et al. 2014, submitted (ArXiv: 1403.5555)
At	Clustering Measurements of AGN, ESO, Garching, Germany, 1418.06.2014

Background Picture: Millennium Simulation (MPA); Spectrum-Roentgen-Gamma satellite (P. Predehl 2011)

X-ray surveys of the last ~2 decades

Max-Planck-Institut für

Large-scale structure studies in X-rays

XMM-Newton

16.06.2014

eRASS: new era of LSS studies - Kolodzig et al. - Clustering with AGN, ESO, 2014

Large-scale structure studies in X-rays

of AGN

~3 500

10⁻¹³

LSS studies:

Krumpe+2012

Krumpe+2012

Area [deg²]

~5 500

Max-Planck-Institut für Astrophysik

ROSAT

RASS

Depth

z < 0.5

XMM-Newton

eRASS: predicted redshift distribution

16.06.2014

Tools of eRASS for LSS studies

- AGN as phase of galaxy evolution:
 - X-ray Luminosity Function (see Kolodzig et al. 2013a):
 - AGN evolution
 - accretion history of SMBHs
 - Clustering strength (linear bias factor):
 - AGN environment
 - AGN triggering mechanism
 - SMBH co-evolution with dark matter halo
- AGN as cosmological probe:
 - Baryonic acoustic oscillations (BAOs)
 - independent constrains on cosmological parameters

Clustering Model

Our Clustering Model

- Based on Hütsi, Gilfanov & Sunyaev 2012:
 - Angular Power Spectrum: $C_{\ell} = \frac{2}{\pi} \int P_{\rm DM}^{\rm lin}(k) W_{\ell}^2(k,z) k \, \mathrm{d}k$

$$W_{\ell}(k,z) = \int j_{\ell} \left(k r(z) \right) g(z) b(z) \phi(z) dz$$

growth factor

Assumptions:

Mass of dark matter halo (DMH) of AGN hosts:
 (e.g. Allevato et al. 2011, Krumpe et al. 2012, Mountrichas et al. 2013)

 $M_{\text{DMH,eff}} = 2 \times 10^{13} M_{\odot}/\text{h} \rightarrow \text{bias } b(z, M_{\text{DMH,eff}})$

- X-ray Luminosity Function of Hasinger et al. 2005 (0.5 2.0 keV) for flux-cut and redshift-evolution -> selection function $\phi(z)$ (LDDE model, with redshift cutoff of Brusa et al. 2009 at z>2.7)
- Cosmology: flat $\Lambda\text{CDM},\,\Omega_{\Lambda}$ = 0.7, Ω_{m} = 0.3, Ω_{b} = 0.05, h = 0.7, σ_{8} = 0.8
- Assume: redshifts are known!

16.06.2014

predicted angular power spectrum - C

^{16.06.2014}

eRASS: new era of LSS studies - Kolodzig et al. - Clustering with AGN, ESO, 2014

predicted angular power spectrum - C

^{16.06.2014}

eRASS: new era of LSS studies - Kolodzig et al. - Clustering with AGN, ESO, 2014

Max-Planck-Insti

Clustering Strength (Linear Bias Factor)

high S/N (>10) for wide z-range and "small" sky fraction

16.06.2014

– good S/N (\geq 3) up to z~2.5

– good S/N (\geq 3) up to z~2.0

- 1st time: accurate luminosity and redshift resolved studies
 → studies of dark-matter-halo mass of AGN to unprecedented detail
- 1st time: statistically meaningful sample of AGN with L_X > 10⁴⁴ erg/s
 → comparison with optical quasar-studies possible

16.06.2014

Clustering Strength Measurements - state of the art

Fanidakis et al. 2013

Max-Planck-Institut für Astrophysik

Baryonic Acoustic Oscillations (BAOs)

BAOs beyond z>0.8

- Redshift-Range: 0.8 < z < 2.0
 - so far no detection
 - best tracers:
 AGN, QSOs and
 emission line galaxies (ELGs)
 - planned galaxy surveys:
 - eRASS (2014-2019): AGN \sim 34 kdeg² (4MOST: \geq 14 kdeg²) Dedicated optical BAO surveys:
 - **eBOSS** (2014-2020): ELGs ~1.5 kdeg², QSOs ~7.5 kdeg²
 - **DESI (BigBOSS)** (>2020): ELGs ~14 kdeg²

BAOs with eRASS AGN sample

Kolodzig+2013b, Hüsti+2014 (submitted)

16.06.2014

eRASS: new era of LSS studies - Kolodzig et al. - Clustering with AGN, ESO, 2014

Wavenumber k [h/Mpc]

Comparison with dedicated BAO

 comparable with dedicated BAO surveys due to large sky coverage of eRASS (spec-z for Extragal.Sky)

We need redshifts!

- For clustering strength & XLF:
 - Required Accuracy: $\delta z \sim 0.10$ at $z \sim 1 \rightarrow$ photo-z sufficient
 - Required photometry:
 - ugrizYJHK-Bands or more (Salvato et al. 2011)
 - Or narrow bands as for J-PAS
 - Optimal photo-z suppliers:
 - J-PAS (2015-2021): ~8.5 kdeg², ~7×10⁵ counterparts ($I_{AB} = 22.5 \text{ mag}$)
 - Current/future photo-z suppliers:
 - SDSS: $\sim 14 \text{ kdeg}^2$, $\sim 10^6$ counterparts (I_{AB} = 21.3 mag), ugriz-Bands
 - Pan-STARRS PS1: $\sim 30 \text{ kdeg}^2$, $> 2 \times 10^6$ counterparts, griz-Bands
 - Euclid (2020-2026): ~15 kdeg² (|b|>30°), YJH-Bands
 - LSST (>2019): ~20 kdeg², ugrizy-Bands
 - ...

→ Problems with reliability of photo-z (Salvato et al. 2011)

- Spec-z suppliers:
 - SPIDERS: ~2.5 kdeg², ~50 000 spectra
 - 4MOST (>2020): ~14 kdeg², ~700 000 spectra

We need redshifts! Accuracy requirements for BAO detection

Hüsti et al. 2014, submitted, ArXiv: 1403.5555 → see for other X-ray survey strategies

We need redshifts!

- For $\geq 3\sigma$ detection of BAOs with eRASS AGN:
 - Required Accuracy (Extragal.Sky): $\sigma_0 \leq 0.01$
 - Required Size (for spec-z): $\geq 10 \ 000 \ deg^2$
 - Potential suppliers:
 - J-PAS (2015-2021): ~8.5 kdeg², ~700 000 counterparts \rightarrow ~3 σ with σ_0 ~ 0.01 (f_{fail} = 0.0)
 - 4MOST (>2020): ~14 kdeg², ~700 000 spectra \rightarrow ~4 σ

Summary

• AGN sample of eROSITA/SRG All-Sky Survey:

"New era of large-scale structure studies with AGN"

- Clustering strength:
 - >10% accuracy for wide z-range for $\geq 2500 \text{ deg}^2$; \rightarrow SPIDERS: >30% up to z~2
 - 1st time: Luminosity & redshift resolved studies of dark-matter-halo mass of AGN up to z~3
 - 1st time: comparison with optical quasar studies (for $L_X > 10^{44}$ erg/s)
- Baryonic Acoustic Oscillations:
 - 1st time: convincing detection with X-ray selected AGN
 - possible ~11 σ for extragalactic sky & uncharted region: 0.8<z<2.0 ; \rightarrow 4MOST ~4 σ
 - Comparable with dedicated optical surveys
- Remarks:
 - We rely on large & deep photometric & spectroscopic follow-up surveys
 - Cross-correlation with other galaxy types (e.g. ELGs) might have even better statistics
- For details see:

Kolodzig et al. 2013b, A&A 558, 90 (ArXiv: 1305.0819)

Hüsti et al. 2014, submitted (ArXiv: 1403.5555)

alex@mpa-garching.mpg.de

16.06.2014

eRASS: new era of LSS studies - Kolodzig et al. - Clustering with AGN, ESO, 2014