An ESO/RadioNet Workshop ESO Garching, 10–14 March 2014

Highlight talk session 5 Wednesday 10:05

- Privon
- •Gallazzi
- Reeves
- James
- Kelz
- Kyoko

Dynamical Models of Galaxy Mergers as a Tool to Constrain Star Formation Models

George Privon

University of Virginia

3D2014 Highlight Talk (& Poster #31)

A. Evans (UVa/NRAO), J. Barnes (IfA), J. Mazzarella (IPAC/Caltech), J. Hibbard (NRAO), L. Armus (IPAC/Caltech), and the GOALS collaboration http://goals.ipac.caltech.edu

Merger Driven Activity

(c) Interaction/"Merger"

- now within one halo, galaxies interact & lose angular momentum
- SFR starts to increase
- stellar winds dominate feedback - rarely excite QSOs (only special orbits)

(b) "Small Group"

ftrop 99W - halo accretes similar-mass

 - Maio acceleration similar mass companion(s)
 - can occur over a wide mass range
 - M_{halo} still similar to before: dynamical friction merges the subhalos efficiently

(a) Isolated Disk

- halo & disk grow, most stars formed
 secular growth builds bars & pseudobulges
 "Seyfert" fueling (AGN with M_B>-23)
- cannot redden to the red sequence

(d) Coalescence/(U)LIRG

- galaxies coalesce: violent relaxation in core - gas inflows to center:
- starburst & buried (X-ray) AGN - starburst dominates luminosity/feedback, but, total stellar mass formed is small

(e) "Blowout"

 BH grows rapidly: briefly dominates luminosity/feedback
 remaining dust/gas expelled
 get reddened (but not Type II) QSO: recent/ongoing SF in host high Eddington ratios merger signatures still visible

(f) Quasar

 dust removed: now a "traditional" QSO
 host morphology difficult to observe: tidal features fade rapidly
 characteristically blue/young spheroid

(g) Decay/K+A

NGC 7252

M59

 QSO luminosity fades rapidly

 tidal features visible only with very deep observations
 remnant reddens rapidly (E+A/K+A)
 "hot halo" from feedback

 sets up quasi-static cooling

(h) "Dead" Elliptical

 star formation terminated
 large BH/spheroid - efficient feedback
 halo grows to "large group" scales: mergers become inefficient
 growth by "dry" mergers

1000 100 [M_o yr⁻¹] 10 SFR 1 0.1 def С σ ŝ log₁₀[L_{qs0} 10 9 -2 0 -12 1 Time (Relative to Merger) [Gyr]

(e.g., Hopkins+ 2008, Sanders+ 1988)

George Privon (University of Virginia)

3D2014 2 / 5

 $\mathcal{A} \mathcal{A} \mathcal{A}$

臣

Modeling Example: Arp 240

Early stage prograde-prograde encounter, wide pass (\sim 7 disk scale lengths) of 2 roughly equal-mass galaxies. Viewed 230 Myr after first pass, merger in \sim 1.2 Gyr.

(Privon+ 2013)

 $\mathcal{A} \mathcal{A} \mathcal{A}$

3

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆

Merger Driven Activity – Star Formation

With dynamical models for a *sample* of systems...

(Howell+ 2010, Elbaz+ 2011, Privon+ *in prep*)

(Hopkins+ 2008)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

王

Testing Star Formation Models – NGC 2623

Simulated SF in the past 50 Myr (Red – older stars, green – younger). (Privon+ *in prep*)

SQA

Stellar Populations and Mass Maps of nearby galaxies: toward an unbiased view with CALIFA

Anna Gallazzi Stefano Zibetti, Elena Tundo INAF - Osservatorio Astrofisico di Arcetri

and the CALIFA collaboration

Co-funded by the European Union

PI: S.Sanchez, PS: J.Walcher ~400 galaxies observed so far DR of 200-300 galaxies in the Fall

ESO 3D2014, 12/3/2014

The age and metal abundance of stellar populations are related to galaxy mass on a global scale

- Spatially resolved information to 1) link these properties with galaxy structure on local (Gonzales-Delgado et al 2013, Sanchez et al 2013) and 2) reassess global scaling relations
- Correct for biases in derived physical properties due to incomplete and unresolved coverage: affect comparison with galaxy formation models and assessment of redshift evolution

🖈 good leverage in galaxy morphological type and stellar mass

Tuesday, March 11, 2014

- ★ Optimal set of absorption features: D4000, Hβ, Hγ+Hδ, [Mg₂Fe], [MgFe]'
- ★ g-i SDSS color to account for dust attenuation and constrain stellar mass

MONTE CARLO LIBRARY OF COMPLEX SFH AND METALLICITIES:

exponential SFH + random burst; metallicity fixed for each model (i.e. no chemical evolution) – based on BCO3; 2-parameter dust model a la Charlot&Fall2000

build full probability density function of STELLAR MASS, LUMINOSITY-AND MASS-WEIGHTED AGE, STELLAR METALLICITY Age- and metallicity-sensitive absorption features Individual regions versus integrated value

Tuesday, March 11, 2014

A search for HI absorption in nearby galaxies

Sarah Reeves Elaine Sadler, James Allison, Baerbel Koribalski, Stephen Curran, Michael Pracy

Intervening HI absorption

• HI absorption-line studies provide a **distance-independent** probe of the neutral gas in galaxies

$$N_{HI} \approx 1.823 \times 10^{18} \ \frac{T_S}{f} \int \tau_{obs}(v) \ dv$$

0.1

Optical Depth

0.2

0.3

A search for intervening absorption in nearby galaxies

- Conducting a **targeted search** for intervening absorption with the ATCA
- Sample: **I6 nearby, gas-rich galaxies** (selected from the HIPASS Bright Galaxy Catalogue; Koribalski et al. 2004)
- By targeting nearby galaxies we are able to simultaneously map the galaxies in HI - allows us to **directly relate gas distribution to the absorption-line detection rate**
- Investigate the detection rate of intervening absorption as a function of impact parameter
- Combined emission- and absorption-line data allows us to estimate the spin temperature of the gas

Emission and Absorption Results

10

 $N_{HI} \, \left(10^{20} \, {
m ~atoms~cm^{-2}} \,
ight)$ to

10

10

10

20

R (kpc)

Blue contours: ATCA HI distribution **Greyscale:** optical image (SuperCOSMOS)

- 7/15 sight-lines intersect the **HI disk** of the foreground galaxy
- One intervening absorptionline detection (7% detection rate)
- Find low detection rate is largely due to the structure of the background sources

30

40

10

20

R (kpc)

ESO150-G005

ESO402-G025

NGC7412

ESO345-G046

IC1954

NGC7424

30

40

 This provides important information about the expected detection rate of future absorption-line surveys

Detection in NGC5156

Further details:

POSTER 33

- HI column density: $N_{HI} \sim 1.1 \times 10^{21} \text{ cm}^{-2}$ (for T_s/f = 100 K)
- Spin temperature: estimate $T_s/f \sim 160$ K
- Currently conducting follow-up observations (high spectral resolution)

A spatially resolved chemodynamical analysis of Harol I

B. James, Y. Tsamis, M. Barlow, J. Walsh & M. Westmoquette, 2013b, MNRAS

ACS-HRC F220W, F330W & F814W, with ACS-WFC F435W and F550W

Value Property Reference RA (J2000) 00h36'52.5" NED^a Dec (J2000) -33deg33'19" NED^a 0.020558 this work 83.6 this workb Distance / Mpc Velocity / km s⁻¹ 6146 ± 17 this work $\sim 10^{10}$ Stellar mass / Mo Adamo et al. (2010) 2×10^9 Gas mass / Mo Bergvall et al. (2000) $10^{3} - 10^{6}$ Cluster masses / Mo Adamo et al. (2010) Present SFR / Mo yr-1 22 ± 3 Adamo et al. (2010) 1.9×10^{11} LIR / Lo Bergvall et al. (2000)

A spatially resolved chemodynamical analysis of Harol I

B. James, Y. Tsamis, M. Barlow, J. Walsh & M. Westmoquette, 2013b, MNRAS

ACS-HRC F220W, F330W & F814W, with ACS-WFC F435W and F550W

A spatially resolved chemodynamical analysis of Harol I

B. James, Y. Tsamis, M. Barlow, J. Walsh & M. Westmoquette, 2013b, MNRAS

M///

Bethan lames

ioa

ACS-HRC F220W, F330W & F814W, with ACS-WFC F435W and F550W

Haro II: Electron Temperature and Density Maps

[OIII]λ4959/λ4363 C1 C2 (a) (b) arcsecs orcsecs -2 -2 2 0 2 0 4 -4 arcsecs arcsecs 8000 14000 17000 20000 5000 8000 11000 14000 17000 20000 5000 11000 Electron Temperature / K Electron Temperature / K

5"~1.8 kpc -33° 33' 22' 00^h 36^m 53.0^s 52.8⁵ 52.6^s 52.2 Right Ascens Center: R.A. 00 36 52.63 Dec -33 33 18.0

800

James et al. 2013b

James et al. 2013b

James et al. 2013b

James et al. 2013b

Bethan James

Accretion of metal-poor gas? Outflow of O-enriched gas?

James et al. 2013b

Accretion of metal-poor gas? Outflow of O-enriched gas?

WR emission

 $log(Flux x 10^{-16} ergs s^{-1} cm^{-2})$

James et al. 2013b

Accretion of metal-poor gas? Outflow of O-enriched gas?

WR emission

Ejecta of WR stars haven't had time to cool/mix? Spatial resⁿ not high enough to see N/O enhancement?

WR emission

-2

0.30

0.00

0.59

0

orcsecs

 $log(Flux x10^{-16} ergs s^{-1} cm^{-2})$

time to cool/mix?

0.89

1.18

1.48

James et al. 2013b

3D2014, ESO March 2014

3D2014, ESO March 2014

3D2014, ESO March 2014

3D2014, ESO March 2014

3D2014, ESO March 2014

Spatially resolved, multi-component spectroscopic analyses → revised metallicities + isolate localised N-enrichment

Can we rely on luminosity-weighted measurements (i.e. long-slit, global spectra etc) to reliably represent the physical properties of high-z galaxies?

See: e.g. Kobulnicky et al. 1999, Pilyugin et al. 2012, Perez-Montero et al. 2011.

3D2014, ESO March 2014

Poster #1

Sebastian Kamann

Stefan Dreizler Tim-Oliver Husser Andreas Kelz Martin Roth Peter Weilbacher Lutz Wisotzki

Leibniz-Institut für Astrophysik Potsdam (AIP)

Institut für Astrophysik, Universität Göttingen (IAG)

3D spectroscopy in M13 with PMAS

Kamann et al. (2014), A&A (submitted)

Advantages of using PSF fitting techniques

- → S/N optimization
- Source deblending

12. Mar. 2014, ESO-Garching

12. Mar. 2014, ESO-Garching

3D spectroscopy with MUSE in NGC 6266

Institut für Astrophysik Göttingen

AIP

>5000 useful spectra, most of them not accessible via traditional spectroscopic techniques!

12. Mar. 2014, ESO-Garching

Crowded 3D Field Spectroscopy

Black-hole mass estimation of NGC 1097 with ALMA Cycle 0 Data

Kyoko ONISHI¹

kyoko.onishi@nao.ac.jp ¹The Graduate University for Advanced Studies

S. IGUCHI^{1,2}, K. SHETH³, K. KOHNO⁴ ²National Astronomical Observatory of Japan (NAOJ) ³National Radio Astronomy Observatory (NRAO) ⁴The University of Tokyo

BH plays an important role in galaxy evolution

- •(BH mass) (host galaxy properties) relation suggests the coevolution process of galaxy and BH.
 - e.g., BH mass- host galaxy bulge luminosity, bulge mass, stellar velocity dispersion
 - what kind of coevolution process they indicate?
 - AGN feedback process? (DiMatteo et al. 2005; Sijacki et al. 2007)
 - redshift dependence? (Peng et al. 2006; Sijacki et al. 2007)
 - dependence on galaxy type? (McConnell & Ma 2013)
 - no correlation for psudobulge hosts? (Kormendy & Ho 2013)

BH plays an important role in galaxy evolution? We need more samples to discuss on a couple of problems...

- $M_{\rm BH}$ - σ relation
 - the tightest correlation
 - indicates the coevolution process?
 - different trend with galaxy types? McConnell & Ma 2013
 - do not arise in psudobulge hosts? Kormendy & Ho 2013

Need more samples!

Increasing the number of galaxy amples is not straightforward. Using molecular gas dynamics is the most possible method! (see Davis's talk on session 3!)

We used molecular gas dynamics to estimate the BH mass in NGC 1097

Model:

mass profile (stellar mass + BH mass)
velocity field (JAM, Cappellari 2008)
observational effects (KinMS, Davis+ 2013)
parameters: M/L ratio, BH mass

> $M_{BH} = 7 \times 10^{7} M$ M/L = 0.84

observed PVD

from HCN(1-

offset (arcsec)

To summarize...

- BH plays an important role in galaxy evolution
- We need more samples to discuss on a couple of problems
- Increasing the number of galaxy samples is not straightforward
- Using the dynamics of molecular gas is the most possible method to increase the sample of measurable BH mass
- We estimated the BH mass of NGC 1097 with ALMA Cycle 0 data
 - HCN(1-0) and HCO⁺(1-0) line was used to trace the velocity
 - derived BH mass is $0.7^{+0.3}_{-0.2} \times 10^8 M_{\odot}$
- Please come and see my poster No. 28!
- see also Dr. Timothy Davis's talk on session 3!

