

The KMOS Multi-Object Near-Infrared Integral Field Spectrograph

Ray Sharples

Centre for Advanced Instrumentation Durham University and the KMOS Team

ESO 3D2014 11th March 2014

Talk Outline

- Science Requirements
- Technical Description
- Commissioning Results
- Data Reduction Pipeline
- Early GTO/SV Science

- [1] Cluster Formation and Morphology-Density Relation
- [2] The Masses and Growth of Field Galaxies
- [3] Extremely High-Redshift Galaxies and Re-ionisation
- [4] The AGN-Galaxy Formation Connection
- [5] Age-Dating Ellipticals at z=2 to 3
- [6] Stellar Populations in Nearby Galaxies
- [7] Galactic Astronomy

Functional Requirements

Requirement	Value
Throughput	IZ>20%, YJ>20%, H>30%, K>30%
Wavelength coverage	0.85 to 2.5 μm
Spectral Resolution	R>3300,3400,3800,3800 (IZ,YJ,H,K)
Number of IFUs	24
Extent of each IFU	2.8 x 2.8 sq. arc seconds
Spatial Sampling	0.2 arc seconds
Patrol field	7.2' diameter field
Close packing of IFUs	≥3 within 1 sq arcmin
Closest approach of IFUs	≥2 pairs separated by 6 arcsec

KMOS @ UT1 (Antu)

Key Milestones

- Phase A Report
- Preliminary Design Review
- Final Design Review
- Prelim Acceptance Europe
- First Light
- · Commissioning 1
- · Commissioning 2
- Commissioning 3
- Science Verification
- Start of Operations

Sep 2003 May 2006 Apr 2008 Jul 2012 Nov 2012 Nov 2012 Jan 2013 Mar 2013 Jun/Sep 2013 Oct 2013

Pickoff Module: 24 arms

Pickoff Arm Accuracy

Red dotted lines show the minimum requirements from the Tech Spec scaled by 90% for the detector, 85% for the telescope, and 95% for the atmosphere. Segment#3 has worst performance.

Spectral Resolution

- Resolution is close to two pixels FWHM over all spatial channels.
- Graphs show the measurements in four quartiles of H-band.
- Segment #3 seems slightly better than Segment #1

Spatial Resolution

Rot. Angle:	-141	-99	-57	-15	25	157	109	60
<fwhm_y></fwhm_y>	0".57	0".50	0".43	0".50	0".56	0".44	0".51	0".49
<fwhm_z></fwhm_z>	0".60	0".55	0".52	0".55	0".60	0".50	0".59	0".55

- In good seeing and S/N the PSF in reconstructed cubes are well-behaved.
- FWHM along the slice (red) is slightly broader (0".05) due to the additional aberrations in spectrograph (consistent with FWHM~0.2 pixel instrumental PSF)
- Worse in IFU#17-24 at some Nasmyth PAs (still investigating)

Sky Subtraction

Conclusions:

- arm-to-arm sky subtraction is best within Segment#1
- in Segment#1 about as good as simple subtraction from a subsequent exposure
- optimal subtraction from subsequent exposure is significantly better than any of above

Background Noise Limit

Photon-noise limited exposure times (DIT) of 300 sec.

Instrument Flexure

-20

Arcs/Flats taken every 60 degrees

Detector Persistence

Cold Head Vibrations

10⁰

10

^DSD Tip-Tilt (arcseclab²/Hz)

M1-M3 accelerometer test - OK

UT1 Coude test (IRIS) – deemed unacceptable

10² Frequency (Hz) Tilt CCC OFF

Tilt CCC ON

KMOS operations since Comm-1 have required closed cycle coolers to be switched off during all VLTI runs. Adverse impact on arm reliability.

Cold Head Vibrations

Anti-vibration mounts fitted Feb 2014.

Raw Data Format Image: state st

- · Primary Header
- . Empty data section
- · 3 data extensions
- · 8 IFUs per detector
- · Each IFU sliced into 14 slitlets, 14 pix width
- Each slitlet is a dispersed pseudo-longslit, 2040 pix length
- · Exposure size: 48 MB
- 4 pix border around each frame reserved for detector readout electronics

SV/GTO programmes

- Science Verification (21 proposals):
 - KMOS confirmation of Spitzer-selected galaxy clusters at z > 1.4
 - Looking for low luminosity lensed galaxies with KMOS
 - Near-Infrared line strength gradients in IC4296
 - Outflows from massive young stellar objects
 - Exoplanet transits with KMOS
- Guaranteed Time Observations (8 projects underway):
 - KMOS^{3D}
 - KMOS Deep Survey
 - KMOS Kinematic Survey
 - Chemical Evolution of Galaxies using AGB Stars
- UT1 oversubscription: P92 (7.8), P93 (6.7)

Resolved Galaxy Kinematics

0.7<z<1.5 10⁹<M*<10¹¹

Resolved 185 galaxies out of 258 targetted

See also the presentation by David Sobral on Thu morning

Resolved Galaxy Kinematics

Sky subtraction

Russell Smith et al.

Star Clusters (Antennae)

KMOS Mosaic Mode

Jupiter methane bands

65" x 43" 16 pointings 384 IFUs

R136 (30 Dor) *R Davies et al* A&A <u>558</u>, 56 (2013)

Ghosts

Grating ghost: 2% (IZ), 1% (YJ), 0.5% (H), <0.5% (K)

All other ghosts/scattered light <1%

H2RG Detectors

Detector Persistence

