Identifying Seyfert AGN Fueling Mechanisms

Erin K. S. Hicks University of Alaska Anchorage

Richard Davies (MPE)

Witold Maciejewski (Liverpool John Moores University)

Eric Emsellem (ESO), Peter Erwin (MPE), Leonard Burtscher (MPE), Gaelle Dumas(IRAM), Ming-Yi Lin (MPE), Matt Malkan (UCLA), Francisco Müller-Sánchez (CASA), Gilles Orban de Xivry (MPE), David Rosario (MPE), Allan Schnorr-Müller (MPE)

Goal: Trace inflow mechanisms on scales of 1kpc down to tens of parsecs.

Potential Seyfert AGN fueling mechanisms:

- i. Major merger
- ii. Minor merger
- iii. Galaxy interactions
- iv. Accretion of gas streamers
- v. Secular evolution

Goal: Trace inflow mechanisms on scales of 1kpc down to tens of parsecs.

Potential Seyfert AGN fueling mechanisms:

- i. Major merger
 - ii. Minor merger
- iii. Galaxy interactions
- iv. Accretion of gas streamers
- v. Secular evolution

Several studies suggest <u>not</u> major mergers:
+ Over 50% of z~2 AGN in undisturbed host galaxies (Koceviski et al. 2012)

AGN at z~2 *not* in galaxies with enhanced star formation (Rosario et al. 2013)

Goal: Trace inflow mechanisms on scales of 1kpc down to tens of parsecs.

(Neistein & Netzer 2014)

Minor mergers perhaps associated with

low and intermediate luminosity AGN

Potential Seyfert AGN fueling mechanisms:

- i. Major merger
- ii. Minor merger
- iii. Galaxy interactions
- iv. Accretion of gas streamers
- v. Secular evolution

Detailed Kinematics Required

- Imaging studies cannot differentiate between the relative roles of minor mergers, gas accretion (due to interactions or streamers), or secular evolution
- ♦ Detailed studies of the kinematics are needed to do this
- ♦ Also need to look at spatial scales with relevant timescales:

✓ AGN duty cycle is 100 Myrs with flickering on scales of 1-10 Myrs (e.g. Hickox et al. 2014)
 ✓ At r=100pc v=100-150 km s⁻¹ (Hicks et al. 2013)

 \rightarrow Dynamical timescale of 2-3 Myrs, comparable to duty cycle

With local galaxies we can probe the central few hundred parsecs at the resolution needed to accurately measure the nuclear gas and stellar kinematics

Matched Sample: Seyfert & Quiescent Galaxies

Galaxy pairs (from Martini et al.
 2003) matched in large scale
 (>kpc) host galaxy properties:

galaxy type, optical luminosity, angular size, inclination, and distance

Summary of Observations

ID	Galaxy	D	Ref. ^b	pc/"	$T_{\rm int}$	PSF F	WHM
		(Mpc)			(minutes)	(")	(pc)
1a	NGC 3227	21.1	1	102	50	0.55	56
1q	IC 5267	30.3	2	147	140	0.61	90
2a	NGC 5643	16.9	3	82	140	0.49	40
2q	NGC 4030 ^a	27.2	4	132	50 ^a	0.66 ^a	87 ^a
3a	NGC 6300	17.1	4	83	140	0.48	40
3q	NGC 3368	10.5	5	51	40	0.58	30
4a	NGC 6814	22.8	3	111	140	0.51	57
4q	NGC 628	9.9	6	48	100	0.59	28
5a	NGC 7743	19.2	7	93	140	0.54	50
5q	NGC 357	32.1	3	156	90	0.62	97

*	5	galaxy	pairs

- VLT SINFONI
 K-band data
- Average resolution
 54 ± 24 pc

Comparison of Integrated Properties

Seyferts systematically have:

- (1) a more centrally concentrated nuclear stellar surface brightness
- (2) a lower central stellar velocity dispersion (r < 200 pc)

180

160

140

100

80

60

<o>s (km/s) 120

Erin K. S. Hicks

ESO 3D 2014

Comparison of Integrated Properties

 \cap

Seyferts systematically have:

- (1) a more centrally concentrated nuclear stellar surface brightness
- (2) a lower central stellar velocity dispersion(r < 200 pc)
- (3) more centrally concentrated H₂ surface brightness profiles
- (4) elevated central
 - H₂ 1-0 S(1) luminosity
 - (r < 250 pc)

Erin K. S. Hicks

ESO 3D 2014 [±]

104

10

March 2014

Comparison of Integrated Properties

Seyferts systematically have:

- (1) a more centrally concentrated nuclear stellar surface brightness
- (2) a lower central stellar velocity dispersion(r < 200 pc)
- (3) more centrally concentrated H₂ surface brightness profiles
- (4) elevated central
 - H₂ 1-0 S(1) luminosity
 - (r < 250 pc)

- dynamically cold (in comparison to the bulge)
 component of gas and stars on scales of
 hundreds of parsecs in Seyferts
- significant gas reservoir and a relatively young stellar population
- > nuclear stellar population requires a supply of gas from which to form
 → inflow required

Hicks et al. 2013

Kinematic Analysis: Outflows

 At least 3 Seyferts have spatially resolved molecular outflows (+1 with indirect evidence)

Erin K. S. Hicks

ESO 3D 2014

→ a small

1.

- Implies external ac \div
- configurations are d * perturbation would

Erin K. S. Hicks

March 2014

off state?

significant greathflow w

Complex Molecular Gas Kir Inflows & Outflows Superimposed o

 H_2 detections: all 5 Seyferts, 2 inactive galaxies rotating disks: all with H_2 detection

NGC 3227 (Seyfert)

arcsec

2

km s⁻¹

 H_2 1-OS(1) velocity

-2

NGC 5643 (Seyfert)

 H_2 1-0S(1) velocity residual

IC 5267 (inactive)

 $H_2 1-OS(1)$ velocity

Erin K. S. Hicks

ESO 3D 2014

March 2014

Testing the "External Accretion" Hypothesis for Early Type Galaxies

Predictions:

- lack of gas in inactive galaxies vs. presence of gas in active early type galaxies
- existence of counter-rotating gas in some early type galaxies vs. few in late type galaxies
- > a sufficiently dense local intergalactic environment

Support found in:

- ✓ matched active/inactive galaxy samples: sample presented here, as well as Dumas et al. 2007 and Westoby et al. 2012
- ✓ by early type samples: Sarzi et al. 2006; Davis et al.
 2011

Environmental Role in Fueling Seyfert AGN

There is a strong link between:

- local environment
- cirumnuclear dust structures (which may also be caused by dust superimposed along the line of sight)
- circumnuclear H₂ structures/kinematics
- Chaotic circumnuclear structures: associated with external accretion within moderately dense groups with 10-15 members (but not clusters).
- Circumnuclear ordered spiral structures: relatively isolated galaxies, indicate that the large scale disk is the source of gas.

This difference is driven primarily by environment and the relation to galaxy type is secondary

Primary Fueling Mechanism of

External accretion and environment may play a significant role in dictating fueling of nuclear activity.

 $H_2 1-0S(1)$ velocity

H₂ 1-0S(1) velocity residual

 H_2 1-0S(1) velocity

Erin K. S. Hicks

ESO 3D 2014

March 2014