Resolved studies of gas in high-z galaxies

Jacqueline Hodge Jansky Fellow (NRAO)

With Fabian Walter (MPIA), Chris Carilli (NRAO), Erwin de Blok (ASTRON),

Dominik Riechers (Cornell), Emanuele Daddi (CEA)

3D2014 ESO Workshop

13 Mar 2014 – Garching, Germany

Resolved studies of gas in high-z galaxies

submillimeter

Jacqueline Hodge

Jansky Fellow (NRAO)

With Fabian Walter (MPIA), Chris Carilli (NRAO), Erwin de Blok (ASTRON),

Dominik Riechers (Cornell), Emanuele Daddi (CEA)

3D2014 ESO Workshop

13 Mar 2014 – Garching, Germany

Submillimeter Galaxies (SMGs)

SCUBA 850µm

E.g., Barger+98, Smail+97; Hughes +98; Eales+99; Blain+99; Bertoldi +00; Greve+04; Scott+08

Submillimeter Galaxies (SMGs)

SCUBA 850µm

E.g., Barger+98, Smail+97; Hughes +98; Eales+99; Blain+99; Bertoldi +00; Greve+04; Scott+08

The Big Question

What is driving the intense star formation?

- Gas-rich major mergers
 - Induce nuclear starburst
 - High brightness temperature, concentrated emission

X-ray: NASA/CXC/IoA/D.Alexander et al. Illustration: NASA/CXC/M.Weiss

The Big Question

What is driving the intense star formation?

- Gas-rich major mergers
 - Induce nuclear starburst
 - High brightness temperature, concentrated emission

X-ray: NASA/CXC/IoA/D.Alexander et al. Illustration: NASA/CXC/M.Weiss

Cresci et al. 2010, Nature Image credit: ESO/L.Calcada

OR

- Cold-mode accretion (CMA)
 - Gas flows in from IGM
 - Cools rapidly
 - Results in clumpy, star forming disk

Likely a heterogeneous population

High-z galaxies can be highly obscured!

Carilli+10

Walter+12

J. Hodge (NRAO) - 13 Mar 2014

Carilli & Walter (2013)

Previous studies of resolved gas in (unlensed) SMGs in one slide

Tacconi+08

Complication: Excitation

J. Hodge (NRAO) - 13 Mar 2014

Complication: Conversion factor

VS

α_{co} ~ 0.8 M_☉ (K km/s pc²)⁻¹

Varies with:

- \rightarrow Density
- \rightarrow Temperature
- \rightarrow Metallicity

Locally, see (e.g.) Schruba+11; Leroy+11; Sandstrom+12, 13; Papadopoulos+12; Bolatto+13; etc & talk by Karin Sandstrom

Our target: the SMG GN20

Daddi+09

Previous VLA Observations

CO(1-0) with VLA:

Previous VLA Observations

GN20:

Declination

Right Ascension

(Also not 3D!)

Hodge+I3c

Hodge+I3c

Hodge+I3c

Gas vs. Stars

GN20: Gas Kinematics

Dynamical Modeling

Dynamical Modeling

Dynamical Modeling

Flat

- Rotating disk with:
 - Flat rotation curve
 - Inclination: 30°

$$-v_{max} = 575 \text{ km s}^{-1}$$

$$-\delta = 100 \text{ km s}^{-1}$$

•
$$M_{dyn} = 5.4 \times 10^{11} M_{\odot}$$

 $^{-2} \cdot M_* = 2.3 \times 10^{11} M_{\odot}$ (Daddi et al. 2009)

→
$$\alpha_{CO}$$
 = 1.1 ± 0.6 M_☉ (K km s⁻¹ pc²)⁻¹

Looking ahead: resolved high-z Kennicutt-Schmidt relation

- PdBI program to resolve the dust continuum emission on the same scales as the molecular gas
 - → Resolved KS relation (e.g. Decarli+12; Freundlich+13; Genzel+13) at z~4

GN20.2a:

- Compact molecular gas reservoir
- Very high surface density
- Multiple optical counterparts

GN20.2b:

- Slightly more extended, diffuse emission
- Lower (but still high!) surface density

- Extended gas reservoir
- Multiple gas clumps
- Rotating disk

Looking further ahead: ALESS

• Used ALMA to map >100 SMGs at 870µm to 1.5" (ALESS; PI Smail)

Hodge et al. (2013a)

• Cycle I program to resolve continuum to 0.15"/I kpc (PI Hodge)

