ALMA simulators for Cycle 2

Eelco van Kampen, ESO

The use of simulators

Proposers can use simulations to test their science case:

- can I do this with ALMA? Do I need the ACA, or TP?
- can I do this during Cycle 2? Should I?
- how to optimize my science goal?

PIs can use simulations to interpret their observed data

The simulation tools are also used by the ALMA project itself

An H-alpha image of M51 provided by D. Thilker (NRAO)

Nearby galaxy (ALMA band 9)

Skymodel

M51_full.image.flat

ES (30 min)

Full 2 km array (4h)

ES (4h)

Full 6 km array (4h)

Full 2 km array (30 min)

0.0 -0.5 -1.0 -1.5

Cycle 2 ALMA simulators

Novice users: OST (hosted at the UK ARC: http://almaost.jb.man.ac.uk)

Expert users: simobserve/simanalyze/simalma (part of CASA)

Simobserve/simanalyze/simalma are CASA *tasks* used to produce mock ALMA data from an input sky model (theoretical model or previous observation).

The main work is done by the sm **tool**: the three tasks (Python scripts) act as a user-friendly interface to this tool with additional work done on plotting and analysis

The OST (Observation Support Tool) is a webtool that also uses the sm **tool** under the hood, but is much simplified (hence faster) and restricted, with a website acting as a simple GUI to set parameters and run the simulation

The OST (Observation Support Tool)

almaost.jb.man.ac.uk

on-line 'casaguides' to simobserve

Note for proposers

Values from simobserve or the OST should not be used to calculate exposure times for ALMA Science Goals. Only values from the ALMA sensitivity calculator should be used for this purpose, as it is the ALMA sensitivity calculator that will be used in the technical assessment of ALMA proposals.

Representative Cycle 2 antenna configurations are included in CASA 4.2 and the OST (and can be downloaded from the Science Portal), but the actual configuration could differ somewhat when the observation is scheduled.

General comments

There are two types of input models:

- a theoretical model (a science simulation)
- a previous observation, in the same waveband or a related one

In the first case the input image is noise free, in the second case it is not. Therefore the noise estimated by *simobserve* or the OST comes on top of the original noise, and could result in overestimation.

Both *simobserve* and the OST are based on the sm tools in CASA, but do not include the same noise terms, and have different default clean parameters.

Warning: CLEAN Bias

As is the case for real images, cleaning images produced by simobserve can lead to a spurious decrease in object fluxes and noise on the image (an effect known as "clean bias"). This is particularly true for observations with poor coverage of the uv-plane, i.e. using telescopes with small numbers of antennas, such as the ALMA Early Science configurations, and/or in short "snapshot" observations. Users should always clean images with care, using a small number of iterations and/or a conservative (3-5sigma) threshold and boxing bright sources.

simobserve versus OST: images

simobserve OST

M51@z=0.5, Early Science configuration, band 6

simobserve versus OST: noise levels

rms noise comparison for all ALMA bands (using pure noise maps)

ALMA+ACA+TP

Deconvolving the predicted visibilities back into an image

Many ways of doing this, including:

- 1) use the total power image as a model when deconvolving the ACA image, and then use the result as a model when deconvolving the 12m interferometric image (this tends to give low weight to the large spatial scales)
- 2) use multiscale clean, in the clean task (again using the lower resolution image as a model when deconvolving the higher resolution one)
- 3) create each image independently, and then use the CASA feather task to combine them entirely in the image plane

Note: use different dates for ALMA, ACA and TP simulated visibilities, as generic antenna names are used by *simobserve* ... (dataset concatenation !).

New *simalma* task in CASA to help you do this in one go ... but see next slide!

CASA 4.1 or 4.2?

From the CASA download page:

Default simobserve parameters

```
CASA <3>: inp
----> inp()
# simobserve :: mosaic simulation task
                           'sim'
                                        # root prefix for output file names
project.
skymodel
                                        # model image to observe
complist
                                        # componentlist to observe
setpointings
                           True
                                        # integration (sampling) time
     integration
                           '10s'
                                        # "J2000 19h00m00 -40d00m00" or "" to center on model
     direction
                        ['', '']
                                        # angular size of map or "" to cover model
     mapsize
                          'ALMA'
                                        # hexagonal, square (raster), ALMA, etc.
     maptupe:
                                        # spacing in between pointings or "0.25PB" or "" for Nyquist
     pointingspacing =
obsnode
                           'int'
                                        # observation mode to simulate [int(interferometer)|sd(singledish)|""(none)]
     antennalist
                    = 'alma.out10.cfg'
                                        # interferometer antenna position file
                    = '2014/05/21'
                                        # date of observation - not critical unless concatting simulations
     refdate:
                       'transit'
                                        # hour angle of observation center e.g. -3:00:00, or "transit"
     hourangle
     totaltime
                         '7200s'
                                        # total time of observation or number of repetitions
                                          pt source calibrator [experimental]
     caldirection
                           '1Jy'
     calflux
thermalnoise
                                        # add thermal noise: [tsys-atm|tsys-manual|""]
leakage
                                        # cross polarization (interferometer only)
                            0.0
                          'both'
                                        # display graphics at each stage to [screen|file|both|none]
graphics
verbose.
                    =
                           False
                                        # overwrite files starting with $project
                           True
overwrite.
                                        # If true the taskname must be started using simobserve(...)
                           False
async
```

Setting *simobserve* parameters

skymodel=<filename> thermalnoise='tsys-atm'

```
# simobserve :: mosaic simulation task:
                           'sim'
project.
                                        # root prefix for output file names
                    = 'beautiful model' # model image to observe
skymodel
                                       # scale surface brightness of brightest pixel e.g. "1.2Jy/pixel"
    inbright
                                          set new direction e.g. "J2000 19h00m00 -40d00m00"
    indirection
                                          set new cell/pixel size e.g. "0.1arcsec"
    incell
                                         set new frequency of center channel e.g. "89GHz" (required even for 2D model)
    incenter
                                          set new channel width e.g. "10MHz" (required even for 2D model)
    inwidth.
                             1.1
complist
                                        # componentlist to observe
setpointings
                           True
    integration
                           '10s'
                                        # integration (sampling) time
                                       # "J2000 19h00m00 -40d00m00" or "" to center on model
    direction
                       ['', '']
                                       # angular size of map or "" to cover model
    mapsize
                                        # hexagonal, square, etc
    maptupe
                          'ALMA'
                                          spacing in between pointings or "0.25PB" or "" for 0.5 PB
    pointingspacing =
                                        # observation mode to simulate [int(interferometer)|sd(singledish)|""(none)]
obsnode
                           'int'
    antennalist
                   = 'alma.out10.cfg'
                                       # interferometer antenna position file
    refdate
                   = '2012/05/21'
                                        # date of observation - not critical unless concatting simulations
                                       # hour angle of observation center e.g. -3:00:00, or "transit"
    hourangle
                   - 'transit'
                                       # total time of observation or number of repetitions
    totaltime.
                         '7200s'
    caldirection
                                        # pt source calibrator [experimental]
    calflux
                           '1Jy'
                                       # add thermal noise: [tsys-atm/tsys-manual/""]
thermalnoise
                   = 'tsys-atm'
                                        # Precipitable Water Vapor in mm
                            1.0
    user_pwv
                          269.0
    t_ground
                                        # ambient temperature
                                        # random number seed
                          11111
    seed
                                       # cross polarization (interferometer only)
                           0.0
leakage
                          'both'
                                        # display graphics at each stage to [screen|file|both|none]
graphics
verbose:
                          False
                                        # overwrite files starting with $project
overwrite.
                           True
                          False
                                       # If true the taskname must be started using simobserve(...)
async
```

Default simanalyze parameters

```
# simanalyze :: image and analyze simulated datasets
                           'sim<sup>†</sup>
                                        # root prefix for output file names
project
                                        # (re)image $project.*.ms to $project.image
image
                            True
                       'default'
                                        # Measurement Set(s) to image
     vis
                                        # prior image to use in clean e.g. existing single dish image
     modelimage
                                        # output image size in pixels (x,y) or 0 to match model
     imsize
                              1.1
                                        # set output image direction, (otherwise center on the model)
     imdirection
                              1.1
     cell
                                        # cell size with units or "" to equal model
                                        # maximum number of iterations (0 for dirty image)
                             500
     niter
                        '0.1mJy'
                                        # flux level (+units) to stop cleaning
     threshold
                   = 'natural'
                                        # weighting to apply to visibilities
     weighting
     mask
                                        # Cleanbox(es), mask image(s), region(s), or a level
     outertaper
                                        # uv-taper on outer baselines in uv-plane
                             Ί'
                                        # Stokes params to image
     stokes
analyze
                          False
                                        # (only first 6 selected outputs will be displayed)
graphics
                          'both'
                                        # display graphics at each stage to [screen|file|both|none]
verbose.
                          False
                                        # overwrite files starting with $project
                          True
overwrite.
                                        # If true the taskname must be started using simanalyze(...)
                          False
async
```

Setting *simanalyze* parameters

analyze=True

```
# simanalyze :: image and analyze simulated datasets
                           'sim'
                                        # root prefix for output file names
project
                                        # (re)image $project.*.ms to $project.image
                            True
image
                      'default'
                                        # Measurement Set(s) to image
    vis.
                                          prior image to use in clean e.g. existing single dish image
    modelimage
                                          output image size in pixels (x,y) or 0 to match model
    imsize
                                          set output image direction, (otherwise center on the model)
    imdirection
                                          cell size with units or "" to equal model
    cell
                            500
                                          maximum number of iterations (O for dirty image)
    niter
    threshold
                                        # flux level (+units) to stop cleaning
                        '0.1mJu'
    weighting
                      'natural'
                                        # weighting to apply to visibilities
                                        # Cleanbox(es), mask image(s), region(s), or a level
    mask
                              ΪĴ
    outentapen
                                        # uv-taper on outer baselines in uv-plane
    stokes
                             ' T '
                                        # Stokes params to image
                                           (only first 6 selected outputs will be displayed)
analuze
                            True
                            True
    shouldy
                                          display uv coverage
    showpsf
                                          display synthesized (dirty) beam (ignored in single dish simulation)
                            True
    showmodel
                           True
                                          display sky model at original resolution
                                          display sky model convolved with output beam
    showconvolved =
                          False
    showclean
                           True
                                          display the synthesized image
                                          display the clean residual image (ignored in single dish simulation)
    showresidual
                          False
                                          display difference image
    showdifference =
                           True
                                        # display fidelity
    showfidelity
                           True
                          'both'
                                        # display graphics at each stage to [screen|file|both|none]
graphics
                          False
verbose
                           True
overwrite.
                                        # overwrite files starting with $project
                                        # If true the taskname must be started using simanalyze(...)
                          False
async
```

Antenna configurations

Antenna configurations are simple text files, listing all antennas that are part of the array of choice. Many come with CASA, and can be found in the CASA repository directory in the subdirectory data/alma/simmos

For example, to select ALMA full science configuration #20, use (in simobserve) > antennalist='alma.out20.cfg'

One can also choose a configuration corresponding to a certain resolution, eg: > antennalist = "alma; 0.05arcsec"

NOTE: the 'full operations' antenna configurations are meant to be representative. The Cycle 2 antenna configuration files are all included in CASA 4.2, but need to be requested separately for CASA 4.1 (can be downloaded from the Science Portal!).

Example antenna configuration for full operations (included with CASA)

All antenna configurations included in CASA 4.1

all files in CASA's subdirectory /data/alma/simmos:

WSRT₊cfg	alma.out10.cfg
aca.i.cfg	alma.out11.cfg
aca.ns.cfg	alma.out12.cfg
aca.tp.cfg	alma.out13.cfg
aca_cycle1.cfg	alma₊out14.cfg
alma.cycleO.compact.cfg	alma.out15.cfg
alma.cycleO.extended.cfg	alma.out16.cfg
alma.out01.cfg	alma.out17.cfg
alma.out02.cfg	alma.out18.cfg
alma.out03.cfg	alma.out19.cfg
alma.out04.cfg	alma.out20.cfg
alma.out05.cfg	alma.out21.cfg
alma.out06.cfg	alma.out22.cfg
alma.out07.cfg	alma.out23.cfg
alma.out08.cfg	alma.out24.cfg
alma.out09.cfg	alma.out25.c <u>f</u> g

alma₊out26.cfg
alma.out27.cfg
alma.out28.cfg
alma_cycle1_1.cfg
alma_cycle1_2.cfg
alma_cycle1_3.cfg
alma_cycle1_4.cfg
alma_cycle1_5.cfg
alma_cycle1_6.cfg
carma₊a₊cfg
carma.b.cfg
carma.c.cfg
carma.d.cfg
carma.e.cfg
meerkat.cfg
pdbi-a.cfg

pdbi-b.cfg
pdbi-c.cfg
pdbi-d.cfg
sma.compact.cfg
sma.extended.cfg
sma.subcompact.cfg
sma.vextended.cfg
vla.a.cfg
vla.b.cfg
vla.c.cfg
vla.c.cfg
vla.c.cfg
vla.d.cfg

Output filenames

Output produced: (not all will always exist, depending on input parameters) To support different runs with different arrays, the names have the configuration name from antennalist appended. project.[cfq].skymodel = 4d input sky model image (optionally) scaled project.[cfq].skymodel.flat.regrid.conv = input sky regridded to match the output image, and convolved with the output synthesized beam project.[cfa].skymodel.pna = diagnostic figure of sky model with pointings project.[cfq].ptq.txt = list of mosaic pointings project.[cfq].quick.psf = psf calculated from uv coverage project.[cfg].ms = noise-free measurement set project.[cfg].noisy.ms = corrupted measurement set project.[cfg].observe.png = diagnostic figure of uv coverage and visibilities. project.[cfq].image = synthesized image project.[cfg].flux.pbcoverage = promary beam correction for mosaic image project.[cfq].residual = residual image after cleaning project.[cfq].clean.last = parameter file of what parameters were used in the clean task project.[cfq].psf = synthesized beam calculated from weighted uv distribution project.[cfg].image.png = diagnostic figure of clean image and residual project.[cfq].fidelity = fidelity image project.[cfq].analysis.png = diagnostic figure of difference and fidelity project.[cfq].simdata.last = saved input parameters for simdata task

Running simobserve interactively

```
1: start up CASA: casapy
2: default("simobserve")
3: inp()
4: manually set the various parameters
5: go() or simobserve()
repeat 4+5
```

This works the same way for *simanalyze* (or any other CASA task)

Running simobserve using a script

1: open yourscript.py in your favorite editor

2: start up CASA: casapy

3: execfile("yourscript.py")

edit yourscript.py and repeat 3

Things you (could) need

Tutorial material, to be found at ftp://ftp.eso.org/pub/general/simdata/:

- input models (skymodels): FITS files (or use your own!)
- scripts / parameter settings: python files
- Cycle 2 antenna configuration files (only for CASA 4.1 they are included in CASA 4.2) Downloading 'ALL.tar' or 'ALL.zip' gets you all of these in one go.

OST: http://almaost.jb.man.ac.uk/

CASA (includes simobserve, simanalyze, simalma): http://casa.nrao.edu/

Simulation CASAguides starting point:

http://casaguides.nrao.edu/index.php?title=Simulating Observations in CASA 4.1

Simulating datacubes (advanced users):

http://casaguides.nrao.edu/index.php?title=N891 simdata (CASA 3.4)

Useful tools:

- FITS viewer/editor: for example Fv (http://heasarc.nasa.gov/lheasoft/ftools/fv/)
- CosmoCalc: http://www.astro.ucla.edu/~wright/CosmoCalc.html

Things we need

Feedback on the simulators!

- bug reports (especially *almasim*)
- suggestions for improvement (always possible)
- interesting input models (for a casaguide)

Send feedback to evkampen@eso.org