



## Ultraviolet Imaging Telescopes on the ISRO Astrosat observatory

## John Hutchings

NRC Canada

# ASTROSAT observatory

LAXPC



UVIT

Large Area X-ray Proportional Counter SXT **Ultra-Violet Imaging Telescopes** Soft X-ray Telescope CZT Cadmium Zinc Telluride Imager Scanning Sky Monitor Launch 2014, >5 year life SSM http://meghnad.iucaa.ernet.in/~astrosat/home.html



# PSLV launch vehicle









## Instrument summary



|                                      | UVIT / OPT                                   | SXT                                    | LAXPC                                   | CZTI                | SSM                                   |
|--------------------------------------|----------------------------------------------|----------------------------------------|-----------------------------------------|---------------------|---------------------------------------|
| Optics                               | Twin Ritchey<br>Chretian 2<br>mirror system. | Conical foil<br>(~Wolter-I)<br>mirrors | Collimator                              | 2 - D coded<br>mask | 1- D coded<br>mask                    |
| Bandwidth                            | 1300-3200 Ang                                | 0.3 - 8 keV                            | 3 - 100 keV                             | 10 - 100 keV        | 2 - 10 keV                            |
| Geometric Area<br>(cm <sup>2</sup> ) | 1250                                         | 250                                    | 10800                                   | 1000                | 180                                   |
| Effective Area<br>(cm <sup>2</sup> ) | 60 (depends on filter)                       | 125@0.5 keV<br>200@1-2 keV<br>25@6 keV | 6000@5-30 keV                           | 1000<br>(E>10 keV)  | ~40 @ 2 keV<br>90 @ 5 keV<br>(Xe gas) |
| Field of View                        | 0.50º dia                                    | 0.35° (FWHM)                           | 1º x 1º                                 | 17º x 17º           | 6° x 90°                              |
| Energy<br>Resolution                 | <1000 A<br>(depends on<br>choice of filters) | 2%@6keV                                | 9%@22 keV                               | 5% at 10 keV        | 19% @ 6 keV                           |
| Angular<br>Resolution                | 1.8 arcsec                                   | 3 - 4 arcmin<br>(HPD)                  | ~(1-5) arcmin<br>(in scan mode<br>only) | 8 arcmin            | ~10 arcmin                            |
| Time resolution                      | 10 ms                                        | 2.6s, 0.3s,1ms                         | 10 microsec                             | 1 ms                | 1 ms                                  |





### Primary Science Objectives of ASTROSAT

- 8. Understand high energy processes in binary systems
- 9. Search for black hole sources in the Galaxy.
- 10. Measure magnetic fields of neutron stars.
- 11. Study high energy processes in extragalactic systems.
- 12. Detect new transient X-ray sources.
- 13. Limited high-angular resolution sky survey in UV (130-300 nm).

These primary science objectives are being met with 5 science payloads.

- 6. Three identical Large Area Xenon-filled Proportional Counters (LAXPC)
- Cadmium-Zinc-Telluride Imager (CZTI)
- 8. A Soft X-ray Imaging Telescope (SXT)
- 9. A Scanning Sky Monitor (SSM)
- 10. A Ultra Violet Imaging Telescope (UVIT)





# **UVIT** capability

- Two 40cm telescopes: 3 simultaneous wavelengths FUV 130-180nm
- NUV 180-300nm + Opt 300-650nm (guiding)
- Photon-counting or integrate mode
- FOV 0.5 degrees, images 4096 pixels, 29Hz read
- Subwindows for reads to 600Hz
- Resolution ~1", depending on filter
- Filters in all channels, objective gratings in UV
- Exposure calculator for all modes, target types













UV conf Oct 2013



## UVIT photon counting detector









Full-field readouts at 29Hz, 1/5 field sub-images at 600Hz 3 centroiding algorithms, selection uploaded; also INT mode Photon events downloaded with position, time, double-event threshold Centroids to 1/8 of 512-pixel CMOS = 4096 pixels over 28arcmin Systematic centroid corrections for CMOS pixels applied Guide star centroid monitors boresight drift at ~2 Hz Science images assembled on the ground – select, shift, add Science images may reject or correct double events Science images may reject centroids from CMOS pixel corners Time sequences for selected objects/areas Simultaneous operation of FUV, NUV, VIS channels Filters in all channels, gratings in UV channels Co-aligned X-ray telescopes operating simultaneously Data from all instruments to observer



## Raw QE measures







## UV flight filters







### FUV 3S flat fields before and after centroid-correction









## Centroid and integrate mode spot images







## FUV focus details

18

17

15

14

13

12

-1



### FUV Detector

Field : ON Axis

Resolution <1.3" (1.8")

| <b>FUV FOCUS TEST RESULTS - Center of Field</b> |          |      |            |          |          |          |       |
|-------------------------------------------------|----------|------|------------|----------|----------|----------|-------|
| Theodolite                                      | Filter   | Slot | Wavelength | Posi     | tion     | PH       | FWHM  |
| Angles:                                         | Name     | No   | (nm)       | Χ        | Y        | Position |       |
| V: 90° 11' 26",                                 |          |      |            |          |          |          |       |
| Hz: 0° 02' 53"                                  | Caf2     | 1    | 150        | 258.5565 | 256.5314 | -1.61    | 12.29 |
| V: 90° 11' 28'',                                |          |      |            |          |          |          |       |
| Hz: 0° 02' 44"                                  | Baf2     | 2    | 160        | 261.4736 | 257.3692 | -1.60    | 10.72 |
| V: 90° 11' 28'',                                |          |      |            |          |          |          |       |
| Hz: 0° 02' 44"                                  | Sapphire | 3    | 160        | 262.3986 | 257.427  | -1.59    | 10.27 |
| V: 90° 11' 28'',                                |          |      |            |          |          |          |       |
| Hz: 0° 02' 44"                                  | Silica   | 5    | 170        | 259.6639 | 257.1991 | -1.60    | 11.62 |
| V: 90° 11' 28",                                 |          |      |            |          |          |          |       |
| Hz: 0° 02' 44"                                  | Caf2     | 7    | 150        | 260.3312 | 257.2692 | -1.60    | 12.69 |



## Thermal Effect on Focus-fuv telescope



| Date                         | Temp           | erature                   | Date                     | Temperature    |                      |  |
|------------------------------|----------------|---------------------------|--------------------------|----------------|----------------------|--|
| 05/05/                       | 19.            | 8Deg                      | 06/05/2                  | 25.4Deg        |                      |  |
| 2012                         |                |                           | 012                      |                |                      |  |
| Zygo<br>Positio<br>n<br>(mm) | Defocus<br>(w) | 60%ENE<br>Dia<br>(micron) | Zygo<br>Position<br>(mm) | Defocus<br>(w) | 60%ENE Dia<br>Micron |  |
|                              |                |                           |                          |                |                      |  |
| 24.1                         | 0.257          | 41.2                      | 24.1                     | 0.367          | 48.3                 |  |
| 24.2                         | 0.184          | 35.4                      | 24.2                     | 0.312          | 43.9                 |  |
| 24.3                         | 0.119          | 31                        | 24.3                     | 0.25           | 38.8                 |  |
| 24.4                         | 0.056          | 28.9                      | 24.4                     | 0.181          | 32.6                 |  |
| 24.5                         | -0.006         | 28.3                      | 24.5                     | 0.122          | 29.9                 |  |
| 24.6                         | -0.061         | 28.6                      | 24.6                     | 0.055          | 28.6                 |  |
| 24.7                         | -0.116         | 30.1                      | 24.7                     | -0.006         | 28.3                 |  |
| 24.8                         | -0.186         | 32.7                      | 24.8                     | -0.074         | 28.6                 |  |
| 24.9                         | -0.251         | 37                        | 24.9                     | -0.132         | 29.9                 |  |
| 25                           | -0.341         | 42.5                      | 25                       | -0.194         | 32.6                 |  |

Focus Shift < 189micron/5.6 Degree ~32 Micron/°C







*Focus change with temperature* FUV NUV



|          | -1.76                     | -1.7                  | -1.64                         |
|----------|---------------------------|-----------------------|-------------------------------|
| Filtor   | Focus<br>@+2∘C<br>Thermal | Focus@<br>Nomin<br>al | Focus<br>@-2°C<br>Therm<br>al |
| Name     | Edg                       | e of the field        | 1                             |
| Caf2 (1) | 11.7                      | 11.7                  | 11.8                          |
| Caf2 (1) | 12.7                      | 12.5                  | 12.5                          |
| Caf2 (1) | 11.4                      | 11.5                  | 11.7                          |
| Caf2 (1) | 12.6                      | 12.6                  | 12.6                          |
|          | с                         | enter Field           |                               |
| Caf2(1)  | 12.5                      | 12.4                  | 12.3                          |
| Baf2     | 11.0                      | 10.8                  | 10.7                          |
| Sapphire | 10.7                      | 10.5                  | 10.4                          |
| Silica   | 11.9                      | 11.7                  | 11.6                          |
| Caf2(2)  | 13.0                      | 12.8                  | 12.7                          |

|                | -1.75                     | -1.7                  | -1.65                      |  |  |  |
|----------------|---------------------------|-----------------------|----------------------------|--|--|--|
|                | Focus<br>@+2ºC<br>Thermal | Focus@<br>Nomi<br>nal | Focus @-<br>2ºC<br>Thermal |  |  |  |
| Filter<br>Name | Edg                       | e of the              | field                      |  |  |  |
| Silica (3.0)   | 8.5                       | 8.9                   | 9.5                        |  |  |  |
| Silica (3.0)   | 10.6                      | 10.4                  | 10.3                       |  |  |  |
| Silica (3.0)   | 11.5                      | 11.7                  | 12.0                       |  |  |  |
| Silica (3.0)   | 8.5                       | 8.7                   | 9.0                        |  |  |  |
|                | Center Field              |                       |                            |  |  |  |
| Silica(3.0)    | 9.9                       | 9.8                   | 9.8                        |  |  |  |
| Silica (3.3)   | 8.7                       | 8.5                   | 8.4                        |  |  |  |
| NUV B13        | 10.0                      | 9.7                   | 9.5                        |  |  |  |
| NUV B4         | 12.3                      | 12.0                  | 11.8                       |  |  |  |
| NUV N2         | 8.8                       | 8.6                   | 8.5                        |  |  |  |
| NUV B15        | 12.0                      | 12.0                  | 12.1                       |  |  |  |



## NUV (and VIS) flight resolution









## NUV/VIS Telescope Thermal Effect on Focus

Strhel @ 632.8nm





# UVIT image quality

| Channel        | FUV | NUV | VIS |
|----------------|-----|-----|-----|
| Best FWHM (")  | 1.1 | 0.9 | 0.9 |
| Worst FWHM (") | 1.2 | 1.2 | 1.1 |

These numbers are better than I had anticipated and are very good news. Spec was 1.8". Values a little higher for some filters. With these values, the gratings give R~100 and 200 for first and second order.

FUV throughout down 5% over 18 months: launch soon!
Cleanliness, purging, witness samples in plan to monitor this.
Image quality robust to expected temp changes: heaters installed
VIS images corrected with lens – match those of UV channels
Shift and add tested with no FWHM degradation
Readout pixel edge effects calibrated; drift will sample these

## Extended image restoration







Image with single events only

Image with all recorded events

Image with double events restored





## **UVIT** grating





Position of the spots for different orders (0, 1, and 2) are shown for 200 -300 nm.



# **Grating Test results**



#### Grating Dispersion-63771 260 Second Order-Fine 250 Zeroth rder 240 .inear(First Order) Linear(Second Orde Y-Coor(Pixels) 230 220 210 200 190 180 170 135 145 155 165 175 125 185 Wavelength (nm) UV conf Oct 2013

### **Dispersion:**

First Order: 4.8nm/Pixel & Second Order: 2.38nm/Pixel

### **Dispersion:**

First Order: 4.78nm/Pixel & Second Order: 2.36nm/Pixel

ISPE





### **UVIT Exposure Time Calculator**

### Source

| Point Source             | Blackbody 50000 Temperature (K)                                                                                               |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Help                     | O Power Law f(nu)                                                                                                             |
| Distance (kpc) 🔽         | 1 Alpha nu 1 Normalization (10 <sup>-10</sup> ergs cm <sup>-2</sup> s <sup>-1</sup> keV <sup>-1</sup> ) Normalized at 1 keV   |
| mv 0.5 Distance 0.5 kpc  | Alpha lambda 1 Normalization (10 <sup>-13</sup> ergs cm <sup>-2</sup> s <sup>-1</sup> Ang <sup>-1</sup> ) Normalized at 300nm |
| Radius 7.4 Solar Radii 💌 | ○ Spectral Type 05V 🔽 Stellar Properties                                                                                      |
| 12.5 m                   | • AGN Linear (norm: V=12.5)                                                                                                   |
| 0 Red Shift              | • Galaxy Bulge (norm: V=12.5)                                                                                                 |
| 10 R (arcsec)            | S/N Warning AGNs & Galaxies                                                                                                   |
| 8 Re (arcsec)            |                                                                                                                               |
| 1 n                      |                                                                                                                               |

### Extinction

| • I Visual Band Extinction, Av                          | Rv = 3.1 |
|---------------------------------------------------------|----------|
| C ] Column Density (10 <sup>21</sup> cm <sup>-2</sup> ) | Help     |
| C Distance                                              |          |
| Calculate                                               |          |



| Blackbody 50000 Temperature (K)                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------|
| Power Law f(nu)                                                                                                                 |
| 1 Alpha nu 1 Normalization (10 <sup>-10</sup> ergs cm <sup>-2</sup> s <sup>-1</sup> keV <sup>-1</sup> ) Normalized at 1 keV     |
| c Alpha lambda 1 Normalization (10 <sup>-13</sup> ergs cm <sup>-2</sup> s <sup>-1</sup> Ang <sup>-1</sup> ) Normalized at 300nm |
| Spectral Type 05V      Stellar Properties                                                                                       |
| AGN Seyfert1 (norm: B=12.5)                                                                                                     |
| Galaxy Bulge (norm: V=12.5)     ▼                                                                                               |
| S/N Warning AGNs & Galaxies                                                                                                     |
|                                                                                                                                 |
|                                                                                                                                 |
|                                                                                                                                 |

### Extinction

csa<sup>T</sup>a Source

| .05 Visual Band Extinction, Av                          | Rv = 3.1 |
|---------------------------------------------------------|----------|
| © 1 Column Density (10 <sup>21</sup> cm <sup>-2</sup> ) | Help     |
| O Distance                                              |          |
| Calculate                                               |          |

#### **UVIT Filter**

|                      | Cts/frame | Time for |                     | Cts/frame | Time for |                      | Cts/frame | Time for |
|----------------------|-----------|----------|---------------------|-----------|----------|----------------------|-----------|----------|
|                      | (29.0Hz)  | S/N=10   |                     | (29.0Hz)  | S/N=10   |                      | (29.0Hz)  | S/N=10   |
| • BaF2 (120-210nm)   | 9.4e-02   | 3.4e+02  | O NUVN1 (184-201nm) | 4.2e-03   | 1.2e+04  | O VIS1 (319-373nm)   | 3.1e-01   | 1.0e+02  |
| Sapphire (120-210nm) | 6.9e-02   | 4.7e+02  | O NUVB2 (190-240nm) | 4.3e-02   | 7.6e+02  | OVIS2 (362-417nm)    | 2.8e-01   | 1.1e+02  |
| © CaF (120-210nm)    | 6.2e-01   | 5.0e+01  | O NUVB3 (220-257nm) | 1.7e-01   | 1.8e+02  | © VIS3 (383-538nm)   | 8.5e-01   | 3.6e+01  |
| OMgF (124-210nm)     | 2.4e-01   | 1.3e+02  | O NUVB4 (245-285nm) | 1.6e-01   | 2.0e+02  | © B (370-510nm)      | 2.9e-01   | 1.1e+02  |
| O Silica (120-210nm) | 2.0e-02   | 1.8e+03  | O NUVN2 (270-290nm) | 4.1e-02   | 8.0e+02  | ○ 1%N.D. (265-560nm) | 1.8e-02   | 2.0e+03  |

#### Warning Code

#### Plots

CSA







#### Quantum Efficiency & Window Transmission





26





|     | -    |
|-----|------|
| मरो | isro |

| A | G     | N | S |
|---|-------|---|---|
|   | · · · |   |   |

| Туре      | Spectral Coverage(nm) | Normalization | Comment              |
|-----------|-----------------------|---------------|----------------------|
| LINER     | 123.5 - 755.0         | V = 12.5      | Spectrum of M81      |
| Seyfert 2 | 123.5 - 994.5         | V = 12.5      | Average of spectra   |
| Seyfert 1 | 113.2 - 707.8         | B = 12.5      | Spectrum of NGC 5548 |
| QSO       | 80.0 - 600.0          | B = 12.5      | Average of spectra   |
| NGC-1068  | 100.0 - 1100.0        | Composite     | Model: lines + cont. |

#### Galaxies

| Туре       | Spectral Coverage(nm) | Normalization | Comment    |
|------------|-----------------------|---------------|------------|
| Elliptical | 123.5 - 993.5         | V = 12.5      |            |
| Bulge      | 123.5 - 754.5         | V = 12.5      |            |
| S0         | 123.5 - 994.0         | V = 12.5      |            |
| Sa         | 123.5 - 994.0         | V = 12.5      |            |
| Sb         | 123.5 - 994.0         | V = 12.5      |            |
| Sc         | 123.5 - 766.0         | V = 12.5      |            |
| Starburst1 | 123.5 - 994.5         | V = 12.5      | E(B-V)<0.1 |
| Starburst2 | 123.5 - 994.5         | V = 12.5      | 0.11       |
| Starburst3 | 123.5 - 994.5         | V = 12.5      | 0.25       |
| Starburst4 | 123.5 - 994.5         | V = 12.5      | 0.39       |
| Starburst5 | 123.5 - 994.5         | V = 12.5      | 0.51       |
| Starburst6 | 123.5 - 994.5         | V = 12.5      | 0.61       |
|            |                       |               |            |

| Туре  | T_{eff} | log_g | Kurucz model    |
|-------|---------|-------|-----------------|
| O5V   | 44500   | 4.04  | kp00_45000[g50] |
| O6V   | 41000   | +3.99 | kp00_40000[g45] |
| O8V   | 35800   | +3.94 | kp00_35000[g40] |
| B0V   | 30000   | +3.94 | kp00_30000[g40] |
| B3V   | 18700   | +3.94 | kp00_19000[g40] |
| B5V   | 15400   | +4.04 | kp00_15000[g40] |
| B8V   | 11900   | +4.04 | kp00_12000[g40] |
| A0V   | 9520    | +4.14 | kp00_9500[g40]  |
| A5V   | 8200    | +4.29 | kp00_8250[g45]  |
| F0V   | 7200    | +4.34 | kp00_7250[g45]  |
| F5V   | 6440    | +4.34 | kp00_6500[g45]  |
| G0V   | 6030    | +4.39 | kp00_6000[g45]  |
| G5V   | 5770    | +4.49 | kp00_5750[g45]  |
| K0V   | 5250    | +4.49 | kp00_5250[g45]  |
| K5V   | 4350    | +4.54 | kp00_4250[g45]  |
| M0V   | 3850    | +4.59 | kp00_3750[g45]  |
| M2V   | 3580    | +4.64 | kp00_3500[g45]  |
| M5V   | 3240    | +4.94 | kp00_3500[g50]  |
| B0III | 29000   | +3.34 | kp00_29000[g35] |
| B5III | 15000   | +3.49 | kp00_15000[g35] |
| G0III | 5850    | +2.94 | kp00_5750[g30]  |

etc

 $RED \Longrightarrow Damage$  to the detector.

YELLOW => Beyond good photometric calibration for full field read rate.



### UVIT special strengths



#### 1. Spatial resolution of ~1"

Resolving stars in crowded fields – local galaxies and globular clusters Structure of distant galaxies Identification of AGN, X-ray sources, GRBs, SN

#### 2. Suite of filters

Isolate emission line objects

Photo-redshifts of distant objects

Stellar population diagnosis, M star shells, asteroseismology, nebulae, T-Tau stars

#### 3. Gratings

Identify/classify hot objects and AGN, Local group massive stars Identify emission line objects

#### 4. Time resolution

Pulsar timing, eclipse/occultation timing Identify variables

#### 5. Simultaneous in 3 bands

Variability with wavelength Identify objects over wide wavelength Combine photometry and variability

#### 6. Simultaneous with X-ray observations

Multi-wavelength monitoring of AGN, X-ray sources, SNR Serendipitous deep fields around X-ray targets

#### 7. Field of view.

Cover galaxies, clusters, deep fields efficiently, cosmology surveys



Astrosat observing time



| Instruments                | PV Phase<br>(6<br>months) <sup>3</sup> | Guaranteed<br>Time (next<br>6 months) <sup>4</sup> | First Year<br>Regular<br>observations | Second year<br>Regular<br>observations | Third year<br>Regular<br>observations |
|----------------------------|----------------------------------------|----------------------------------------------------|---------------------------------------|----------------------------------------|---------------------------------------|
| X-ray Inst.<br>Teams       | 67%                                    | 4 months                                           | 32.5%                                 | 20%                                    | -                                     |
| UVIT Teams                 | 33%                                    | 2 months                                           | 17.5%                                 | 10%                                    | -                                     |
| Indian<br>proposals        | -                                      | -                                                  | 35%                                   | 45%                                    | 65%                                   |
| International<br>proposals | -                                      | -                                                  | -                                     | 10%                                    | 20%                                   |
| Canada                     | -                                      | -                                                  | 5%                                    | 5%                                     | 5%                                    |
| LU Team <sup>2</sup>       | -                                      | -                                                  | 3%                                    | 3%                                     | 3%                                    |
| TOO                        | -                                      | -                                                  | 5%                                    | 5%                                     | 5%                                    |
| Calibration<br>time        | -                                      | -                                                  | 2%                                    | 2%                                     | 2%                                    |