

The Once and Future World of Ultraviolet Astronomy

HST: 1990 - 2018(?)

Era of Giant Telescopes (2020 --)

Big Ben clocktower (96.6 metres) for scale

Giant Magellan Telescope

Thirty-Meter Telescope

European Extremely Large Telescope

Telescope diameter	25.2 metres	30 metres	42 metres
Component mirror segments Cost	7 (8.4-metre segments) US\$600 million	492 (1.44-metre segments) US\$754 million	984 (1.45-metre segments) €900 million (US\$1.37 billion)
Planned location	Chile	Candidates: Hawaii; Mexico; three sites in Chile	Candidates: Canary Islands; Morocco; Argentina; two sites in Chile
Planned construction period	2010-2017 (First mirror already cast)	2009-2016	2010-2017
Technical advantages	Adaptive optics integrated within secondary mirror Shortest focal length means it has the smallest and cheapest structure	Mirror segments are comparatively cheap and more easily replaced Similar scaled-up version of the existing Keck telescopes	Five-mirror design results in a flat focal plane and better images Similar mirror-segment size to the TMT, so greater vendor choice
Financial advantages	Potential support from \$34-billion Harvard endowment or Texas billionaire George Mitchell	\$200-million gift from Intel founder Gordon Moore	Steady European funding stream
Disadvantages	Only one place can make the mirrors Gaps in mirror limit the effective aperture to 21.5 metres	Adaptive optics performed after the light leaves the telescope, so the 'natural seeing' mode cannot benefit from adaptive corrections to wind effects	Biggest and most expensive design No similar design experience Reflections through five mirrors reduce light levels

Era of Giant Telescopes (2020 --)

Giant Magellan Telescope

Thirty-Meter Telescope

European Extremely Large Telescope

Telescope diameter	25.2 metres	30 metres	42 metres
Component mirror segments Cost	7 (8.4-metre segments) US\$600 million	492 (1.44-metre segments) US\$754 million	984 (1.45-metre segments) €900 million (US\$1.37 billion)
Planned location	Chile	Candidates: Hawaii; Mexico; three sites in Chile	Candidates: Canary Islands; Morocco; Argentina; two sites in Chile
Planned construction period	2010-2017 (First mirror already cast)	2009-2016	2010-2017
Technical advantages	Adaptive optics integrated within secondary mirror Shortest focal length means it has the smallest and cheapest structure	Mirror segments are comparatively cheap and more easily replaced Similar scaled-up version of the existing Keck telescopes	Five-mirror design results in a flat focal plane and better images Similar mirror-segment size to the TMT, so greater vendor choice
Financial advantages	Potential support from \$34-billion Harvard endowment or Texas billionaire George Mitchell	\$200-million gift from Intel founder Gordon Moore	Steady European funding stream
Disadvantages	Only one place can make the mirrors Gaps in mirror limit the effective aperture to 21.5 metres	Adaptive optics performed after the light leaves the telescope, so the 'natural seeing' mode cannot benefit from adaptive corrections to wind effects	Biggest and most expensive design No similar design experience Reflections through five mirrors reduce light levels

Where is the UV indispensable (or nearly so)?

- UV upturn in old populations (UVX) Multiphase ISM IGM z < 2

1969-1974

- Galaxy SFR's and SFH's •
- **YSO** star-disk-planet interactions •
- Exoplanets
- **Globular clusters**
- AGN's

ISM/IGM/CGM

(Courtesy E. Jenkins)

Hot Milky Way ISM seen against distant AGN (FUSE)

IGM Absorption Spectrum (HST/COS)

Spectroscopic evidence for circumgalactic cold accretion

UV imaging evidence for CGM: "XUV" star formation

GALEX/Bigiel+ 2010

UV/optical discrimination between late epoch star formation histories in early-type galaxies (Salim+ 2012)

Low-surface brightness **UV** science

Mira tail (GALEX)

Assembly and physics of protoplanetary disks

H₂ outflow in DG Tau

The dangerous lives of exoplanets

H₂O and CO₂ photo-dissociation by dM UV flares

Ly-alpha traces evaporation of a hot Jupiter atmosphere

Probing terrestrial exoplanets by their pollution of white dwarf atmospheres

Planetary metallic features in far-UV spectra of white dwarfs (HST/COS)

Gaensicke+ 2012

UV Determination of Galaxy Star Formation Rates and Histories

Integrated energy distributions of stellar populations: UV sensitivity to age

Dust: the bane of UV studies of star formation

Dust: the bane of UV studies of star formation?

M83: NUV vs NIR bands (HST/WFC3)

M83: NUV vs NIR bands (HST/WFC3)

M83: NUV-to-blue band composite (WFC3)

GALEX

Most galactic environments are ~transparent in the UV

HST

GALEX

Best integrated light star formation estimator (Kennicutt & Evans 2012)

GALEX

GALEX

$SFR = 4.5 \times 10^{-44} [L_{FUV} + 0.5 L_{TIR}]$

GALEX

FUV better matched to duration of SF episodes (20-100 Myr) than ionized features
IR output contaminated by old stars
IR capture of UV photons incomplete except for earliest phases

HST

Kaviraj et al., ApJS, 173, 619 (2007)

Early-type galaxies: dispersion in (GALEX + SDSS) colors

Vacuum-UV contains new/independent information on stellar populations (even CUBES UV won't help)

The UV perspective on globular clusters

Omega Centauri – HST/WFC3 225W, 336W, 814W

UV identification of (binary) Blue Stragglers as tracers of cluster dynamical evolution

Old stellar population integrated light discriminants in the CUBES UV

populations is at wavelengths < 4500 A

The "UV Upturn" in early-type galaxies: recent results

Accepted interpretation: extreme horizontal branch (EHB) & related He-burning stars in the dominant, old, metal-rich population

UVX: Confirm correlation with properties of old population (Coma Cluster)

Smith+ MNRAS, 421, 2982, 2012

UV CMD for M32 (Brown+ 2008): EHB confirmed as source of UVX

FIG. 3.—UV CMD of M32. The EHB and UV-bright post-HB stars are clearly resolved. A solar metallicity ZAHB is plotted for reference (*gray curve*).

UV CMD for M32 (Brown+ 2008): But....

FIG. 3.—UV CMD of M32. The EHB and UV-bright post-HB stars are clearly resolved. A solar metallicity ZAHB is plotted for reference (*gray curve*).

Most ionization in "LINERS" originates <u>not</u> from AGN but instead from hot, low-mass EHB and PAGB stars

"LIERS" Most ionization in "LINERS" originates not from AGN

but instead from hot, low-mass EHB and PAGB stars

AGN: rich UV spectra are prime diagnostics of physical properties

UV Nuclear Flares: Tidal Disruption Events

Potential UV flare diagnostic features in CUBES UV

Prognostication?

Shifting Scientific Tides

- Leading non-UV areas: cosmology, early universe, molecular clouds, obscured star formation (ALMA, JWST).....IR interest may begin to saturate.
- Transients (LSST)
- Exoplanets and planetary formation
- CGM and related low-SB problems
- Stellar astronomy, including binaries

Shifting Scientific Tides

- Leading non-UV areas: cosmology, early universe, molecular clouds, obscured star formation (ALMA, JWST).....IR interest may begin to saturate.
- Transients (LSST)
- Exoplanets and planetary formation
- CGM and related low-SB problems
- Stellar astronomy, including binaries (despite Princeton)

Technical Priorities (not new!)

- Detector QE to > 80% 90-320 nm
- Successful flight tests/astronomy from candidate detectors.
- Single mirror coating with high performance 90-320 nm

"Terrifying puzzles"

