Challenges in low-mass star formation in the (space) ultraviolet

Gregory J. Herczeg Kavli Institute for Astronomy and Astrophysics, Peking University

Eagle Nebula Courtesy hubblesite.org

> Carina Nebula Courtesy hubblesite org

Orion with Proplyds Courtesy hubblesite.org

UV and Star Formation

- Massive Star Formation: feedback
 - PDRs (Hollenbach & Tielens)
 - Proplyds (O stars photoevaporating nearby disks)
- Low-mass star formation and the FUV
 - Envelope and disk chemistry
 - Accretion/outflow physics

 Challenges for the next decade+ in low-mass star formation for the UV

Pre-main sequence stellar evolution

Class o and I protostars: Embedded in envelopes, only visible in IR-mm

Excess NUV/FUV emission

Excess NUV/FUV emission

ACS SBC/PR130L

Excess NUV/FUV emission

Cartoon physics of young stars

FUV radiation fields

(Ingleby+2011, Yang+2012, Gomez de Castro & Marcos-Arenal 2012)

FUV radiation fields

(Ingleby+2011, Yang+2012, Gomez de Castro & Marcos-Arenal 2012)

SOURCES OF UV RADIATION

Cartoon from Semenov & Henning review

Disk Surface: Central Star; nearby O stars

Internal fields: X-rays, Cosmic Rays?, **Radioactive decay** (e.g., Glassgold+1997, Finocchi & Gail 1997, Walsh+2012, Cleeves+2013

Disk/Solar System and the FUV

- H2O photo-dissociation and photodesoprtion (Hogerheijde+2010)
- Molecular dissociation of some molecules (Bergin+2003, Pascucci+2009)
- CO isotopic fractionation (Lyons+)
- General disk modeling: chemistry and PAH heating (e.g., van Zadelhoff+, Woitke+, Bruderer+, Aikawa+, Aresu+)
- Tests: disk chemistry and solar system abundances

Disk/Solar System and the FUV

- H2O photo-dissociation and photodesoprtion (Hogerheijde+2010)
- Molecular dissociation of some molecules (Bergin+2003, Pascucci+2009)
- CO isotopic fractionation (Lyons+)
- General disk modeling: chemistry and PAH heating (e.g., van Zadelhoff+, Woitke+, Bruderer+, Aikawa+, Aresu+)
- Tests: disk chemistry and solar system abundances

Disk/Solar System and the FUV

- H2O photo-dissociation and photodesoprtion (Hogerheijde+2010)
- Molecular dissociation of some molecules (Bergin+2003, Pascucci+2009)
- CO isotopic fractionation (Lyons+)
- General disk modeling: chemistry and PAH heating (e.g., van Zadelhoff+, Woitke+, Bruderer+, Aikawa+, Aresu+)
- Tests: disk chemistry and solar system abundances

Evidence for reset in the solar system: C,N,O content of solar system bodies

Adapted from Lee et al. by Pontoppidan/Salyk PPVI review

Envelopes: similar chemistry, few constraints on the UV luminosity often assumed to be a free parameter!

H₂ and CO emission from CTTSs e.g., Herczeg+2004, France+2011, 2012, Schindhelm+2012

Hundreds of lines in spectra
Excited by wavelength coincinces with Ly-alpha (whopping bright!)

• H2: 2500 K

• CO: 500 K

 Usually probes warm disk surface layer within a few AU

Some cases of wind emission

 Some cases of photoevaporation?

Co-added H2 lines, adapted from France+2012

Molecular Absorption in the UV (France et al. 2012; McJunkin et al. 2012; Yang et al. 2011)

- Line of sight through disk surface
- CO: 500 K
- H2 absorption against Ly-a: 2500 K
- X-Factor (CO/H₂) with cold H₂ absorption measurements?

Disk lifetimes set the timescale for giant planet formation

- Typical lifetime of 3 Myr
- Viscous accretion cannot fully deplete disk
- Timescale affects gas accretion, eccentricities

Photoevaporation by the central star

Photoevaporation rates Alexander/Pascucci PP VI review

- Models by Alexander, Ercolano/Owen, and Gorti/ Hollenbach
 - Rates depend critically on FUV and EUV luminosity

 Observational evidence from [Ne II] and [O I] spectra (Pascucci+; Rigliaco+2013)

H2 conical disk wind: photoevaporation? (Hornbeck, Grady et al. submitted)

H2 conical disk wind: photoevaporation? (Hornbeck, Grady, et al. submitted)

The end of gaseous disks: FUV H2 emission and gas in dissipating disks (Ingleby+2009,2012)

ACS SBC PR130L

Adapted from Yang+2012

- Warm H₂ only detected to CTTSs, never in WTTSs
 - Transition time short
 - Upper limits of gas mass roughly 9 orders of magnitude lower than minimum mass solar nebula
- Most sensitive gas diagnostic?
- HD 98800 N: thought to be a debris disk, but shows warm H2 indicative of accretion

Magnetospheric accretion geometry (V2129 Oph; Donati, Gregory, et al.)

Complex field linesDipole field linesOpen field linesField geometry from Zeeman Doppler ImagingAccretion along dipole field lines (Adams & Gregory 2012)See also spectropolarimetry of He I: Yang+2007, Johns-Krull+2013

High Energy Photons from T Tauri Stars: Accretion + Corona/Chromosphere

(few Myr decay time)

(few hundred Myr decay time)

High Energy Photons from T Tauri Stars: Accretion + Corona/Chromosphere

(few Myr decay time)

(few hundred Myr decay time)

Models: Calvet & Gullbring 1998; Lamzin 1998; Sacco+2009; Orlando+2013

Figure from Hartmann

Funnel flow and shock

Herczeg+2002; Lamzin 2003

Adapted from Günther & Schmitt 2007

Hot lines and accretion flows

(Lamzin 2003; Günther+2008; Ardila +2013, Gomez de Castro 2013)

- Broad emission in hot lines (He II, C IV, N V, O VI) produced by accretion flow
- Broad component: pre-shock gas, highly photoionized
- Narrow component: post-shock gas or extended chromospheric structure
- Some jet sources: C IV blueshfited

Extended structures: semi-forbidden lines

(Gomez de Castro+2005,2007,2011)

- Dense (10¹⁰ cm⁻³) regions
- Small emitting regions
- Contributions from stellar winds and macroturbulent fields near the disk-star interface

Photo-ionized accretion flow

(Gomez de Castro & Marcos-Arenal 2012; Gomez de Castro 2013; Ardila+2013)

- Lines have multiple components, possibly multiple flows
- Extended
 - magnetospheres, photoionized pre-shock gas
- Shock heats nearby photosphere

Accretion/Outflow connection

Breaks angular momentum

- Launch mechanism uncertain
 - Disk wind (Ferreira 2007, Bai & Stone 2013)
 - Shu X-wind
 - Coronal winds (Matt & Pudritz)

Wind temperature: a probe of wind launching

Analysis from Johns-Krull & Herczeg (2007) for TW Hya

- Fast absorption (200 km/s)
- Mostly in atomic/singly ionized lines
- Typically consistent with cool, FUV-photoionized disk wind
- No evidence for a hot coronal wind
 - Rules out hot Matt & Pudritz model

Wind chemistry: similar to disk and PDR (Panoglou, Cabrit et al. 2012)

Optical depth of outflow determines molecular fraction

Collimation of wind into a jet

T Tau HST/ACS SBC F140LP

Jets De talki Schneider talki

6 26536

10"

Log scale

0.734649

GALEX and YSO Identification (Sholnik+ 2011; Rodriguez+2013)

Best low-mass SF science cases for a new UV Observatory

- Forming protoplanets: U-band/NUV, spatial resolution of UV
- Spatially and spectrally resolved disk emission (high-res IFU)

Kraus & Ireland 2012, Keck AO

Past and Future of FUV Observations and Low Mass Star Formation

- Primary results from last few years:
 - Disks: FUV fields; tracers of PDR at disk surface, end of accretion
 - Accretion: probes of accretion stream and shock
 - Outflows: Wind temperatures, molecular winds as test of jet launching
- Currents needs (after fully digesting COS data)
 - Wider range of targets (35 stars: mass, accretion rate, disk inclination)
 - Variability information
 - SBC Imaging/STIS spectral imaging of disks, winds, and jets
- Science with future UV observatories
 - Planet formation, H2/CO/? disk imaging at terrestrial radii (10m)
 - Competitive instrumentation: MOS? IFU? Dichroic? Interesting Filters? Large detector format?