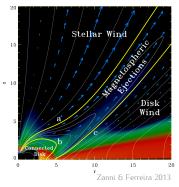
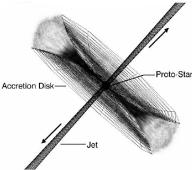
The high-energy view of the CTTS DG Tau


P. Christian Schneider

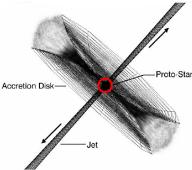
Hamburger Sternwarte

Challenges in UV Astronomy ESO Garching, October 7, 2013


Disks, accretion and **outflows**

- Accreting objects drive jets and outflows, but launching mechanism is unclear
- (Can) regulate angular momentum balance
- For CTTS: Three launching possibilities
 - 1 Stellar wind
 - 2 Magnetospheric ejections (e.g., X-wind / Propeller)
 - 3 Disk wind
- Large initial opening angles
- Collimation by toroidal magnetic fields
- Compared to processes of Herczeg's talk: Observed on (much) larger spatial scales

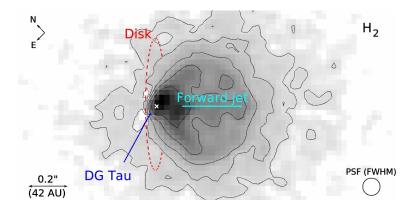
Disks, accretion and **outflows**


- Accreting objects drive jets and outflows, but launching mechanism is unclear
- (Can) regulate angular momentum balance
- For CTTS: Three launching possibilities
 - 1 Stellar wind
 - 2 Magnetospheric ejections (e.g., X-wind / Propeller)
 - 3 Disk wind
- Large initial opening angles
- Collimation by toroidal magnetic fields
- Compared to processes of Herczeg's talk: Observed on (much) larger spatial scales

From www.edu.ics.saitama-u.ac.jp/~hara

Disks, accretion and **outflows**

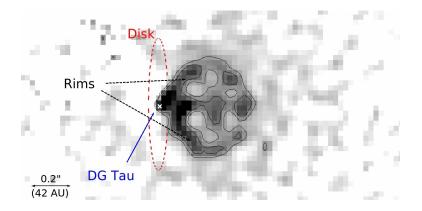
- Accreting objects drive jets and outflows, but launching mechanism is unclear
- (Can) regulate angular momentum balance
- For CTTS: Three launching possibilities
 - 1 Stellar wind
 - 2 Magnetospheric ejections (e.g., X-wind / Propeller)
 - 3 Disk wind
- Large initial opening angles
- Collimation by toroidal magnetic fields
- Compared to processes of Herczeg's talk: Observed on (much) larger spatial scales



From www.edu.ics.saitama-u.ac.jp/~hara

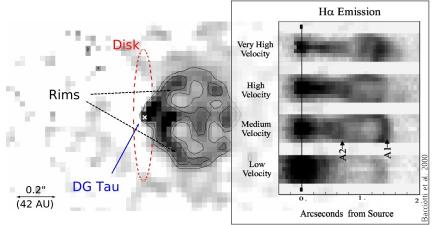
The spatial distribution of molecular hydrogen

From spectroscopy:


- No emission from stellar position ($\lambda \lesssim 1650$ Å)
- Emission is blue-shifted ($v \approx 10 30 \,\mathrm{km}\,\mathrm{s}^{-1}$)

Schneider et al. 2013a

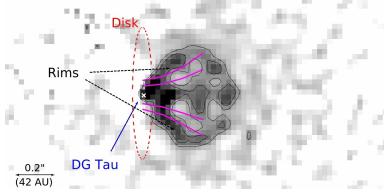
From spectroscopy:


- No emission from stellar position ($\lambda \lesssim 1650$ Å)
- Emission is blue-shifted ($v \approx 10 30 \,\mathrm{km}\,\mathrm{s}^{-1}$)

Schneider et al. 2013a

From spectroscopy:

- \blacksquare No emission from stellar position ($\lambda \lesssim 1650\,\text{\AA})$
- Emission is blue-shifted ($\nu \approx 10 30 \, {\rm km \, s^{-1}}$)

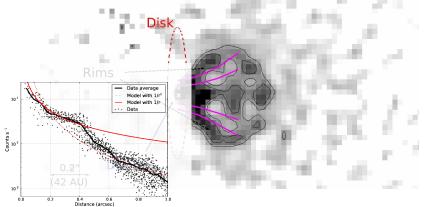


From spectroscopy:

 \blacksquare No emission from stellar position ($\lambda \lesssim 1650\,\text{\AA})$

• Emission is blue-shifted ($v \approx 10 - 30 \,\mathrm{km}\,\mathrm{s}^{-1}$)

Larger extent than faster optical jet component

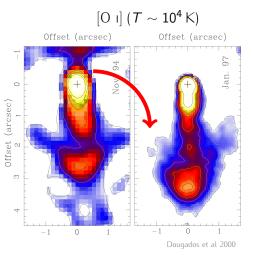

Schneider et al. 2013a

From spectroscopy:

 \blacksquare No emission from stellar position ($\lambda \lesssim 1650\,\text{\AA})$

• Emission is blue-shifted ($v \approx 10 - 30 \,\mathrm{km}\,\mathrm{s}^{-1}$)

Larger extent than faster optical jet component

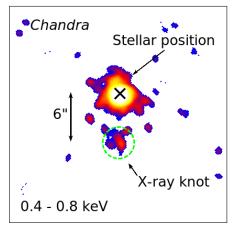

Schneider et al. 2013a

Higher temperatures Why is DG Tau special?

- Low-temperature (10⁴ K) jet
 - consists of individual emission regions (knots)
 - knots possess proper-motion
 - heating by internal shocks (v_{shock} < 100 km s⁻¹)

Lavalley-Fouquet et al. 2000

- High-temperature jet $(T \gtrsim 10^6 \text{ K})$
 - Inner and outer component
 - Shock velocities $\gtrsim 400 \, {\rm km \, s^{-1}}$
 - No proper-motion of inner component

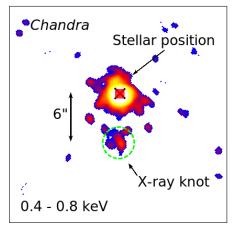


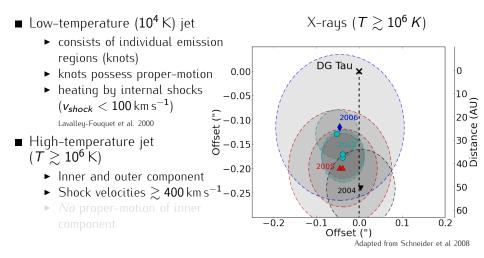
- Low-temperature (10⁴ K) jet
 - consists of individual emission regions (knots)
 - knots possess proper-motion
 - heating by internal shocks (v_{shock} < 100 km s⁻¹)

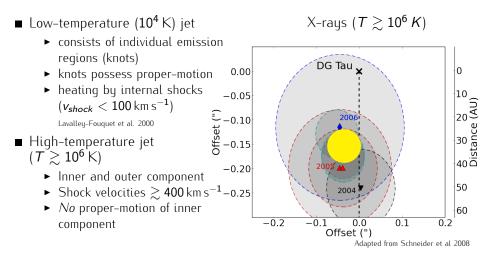
Lavalley-Fouquet et al. 2000

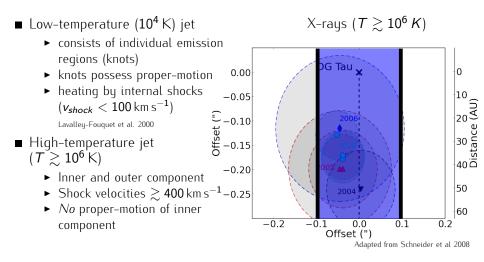
- High-temperature jet $(T \gtrsim 10^6 \text{ K})$
 - Inner and outer component
 - Shock velocities $\gtrsim 400 \, {\rm km \, s^{-1}}$
 - No proper-motion of inner component

X-rays ($T \gtrsim 10^6 K$)

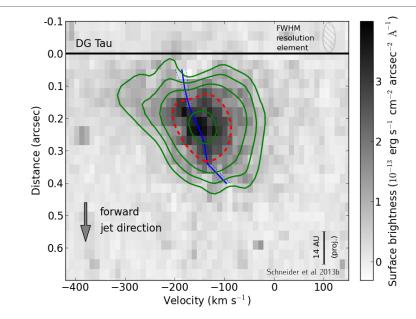


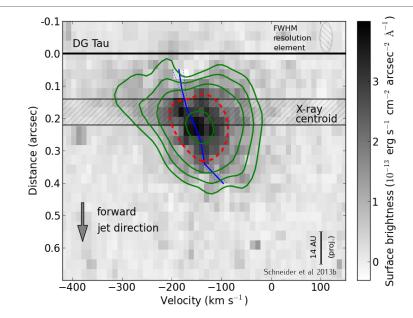

- Low-temperature (10⁴ K) jet
 - consists of individual emission regions (knots)
 - knots possess proper-motion
 - heating by internal shocks (v_{shock} < 100 km s⁻¹)

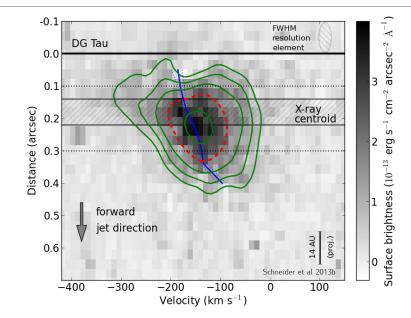

Lavalley-Fouquet et al. 2000


- High-temperature jet $(T \gtrsim 10^6 \text{ K})$
 - Inner and outer component
 - Shock velocities $\gtrsim 400 \, {\rm km \, s^{-1}}$
 - No proper-motion of inner component

X-rays ($T \gtrsim 10^6 K$)






Intermediate temperatures ($T \sim 10^5$ K)

Intermediate temperatures ($T \sim 10^5$ K)

Intermediate temperatures ($T \sim 10^5$ K)

- Plasma cools too rapidly for a hot stellar wind
- Location is special: Collimation region
- Possibilities:
 - Standing shock
 - Magnetic heating
- Comparable objects exist
- Feedback