The Lyman α emitters (LAEs)

Daniel Kunth – Institut d'astrophysique de Paris

ESO Garching Challenges in UV astronomy 7-11 october 2013

on behalf of the Lyman α team:

M. Hayes, M. Mas-Hesse, G. Östlin, D. Schaerer, A. Verhamme, H. Atek et al.

Lyα: a cosmic line

The Ly α line reprocesses roughly 40 per cent of the intrinsic ionizing energy (hv > 1 Ryd). Such a high-contrast feature allows Ly α surveys to probe the most abundant populations of faint low-mass galaxies..

Moreover Ly α is a resonant line, therefore it encodes further information that is unique and exclusive to the n = 1 -> 2 transition.

Specifically it also enables:

- Estimates of kinematic and gaseous properties of the ISM
- Star formation rate SFR(Ly α) and its evolution with z
- Luminosity function $LF(Ly\alpha)$ of the LAEs
- A test of population III star-formation
- A probe of the cosmic web large structures
- A diagnostic of circumgalactic gas via its polarisation
- Studies of the cosmic reionization of the Universe

.... an impressive toolkit for a single monochromatic feature!

Lyα: a cosmic line

Lyman alpha emitters (LAEs)

A galaxy with SFR = 2 Mo / yr. gives:

 $L(Ly\alpha) = 2.2 \times 10^{42} \text{ erg/s}$

at z=6: $f(Ly\alpha) = 5.5 \times 10^{-18}$ erg/s/cm²

EW(Lyα) can reach 240 Å or more (Charlot & Fall 1993, Schaerer 2003)

• Imaging surveys: using narrow band filters (in general EW > 20 Å)

• Complement the LBG technique

Taniguchi et al. 2003

Lyα observations of low z galaxies

 Best way to understand the physics before going to the astrophysics is to study a local sample.

Why not getting too local?

- Intense geocoronal Lyα emission at z=0
- Interstellar HI in our Galaxy produces a damped absorption which hides the potential emission of star-forming galaxies with redshifts below several hundreds of km/s along many sightlines

forget 30 Dor, NGC 604 etc....

key point: Ly α is a resonant line!

The game is to retrieve the true number of Ly α photons emitted at the source! What are the dominant parameters that control the line transfer?

$Ly\alpha$ observations at low z

Observed Lya line properties depend on:

- Metallicity / dust (IUE)
- Clumpiness of H I gas + dust (GALEX)
- Gas kinematics (HST)
- Column density of neutral gas, N_{HI}
- Aperture size & position and spatial resolution
- imaging

Giavalisco+ 1996

- Data: 21 galaxies observed by IUE
- Results: 1) W(Lyα) and Lyα/Hß do not correlate with extinction or [O/H]. 2) ISM geometry is dominant effect

Scarlata+ 2009

- Data: 31 z=0.3 emitters identified by GALEX
- Results: Lya/Ha & Ha/Hß well reproduced by clumpy dust screen

Kunth+ 1998

- **Data:** 8 galaxies observed with HST/GHRS
- Results: 4 emitters have HI & HII offset by up to 200 km/s

Atek+ 2009

- **Data:** I Zw 18 observed with HST/STIS
- **Results:** 1) If outflows present, f_{esc} determined by N_{HI} and t_a . 2) Otherwise, absorption possible in static/low-v case with a high N_{HI} .

Mas-Hesse 2003

- **Data:** 3 galaxies observed with HST/STIS
- Results: spatial variations of Lyα

Ostlin+ 2009

- Data: HST WFC3/UVIS+ACS/SBC optical+FUV images
- Results: aperture size and spatial resolution matter

$Ly\alpha$ observations at low z

Observed Lya line properties depend on:

- Metallicity / dust (IUE)
- Clumpiness of H I gas + dust (GALEX)
- Gas kinematics (HST)
- Column density of neutral gas, N_{HI}
- Aperture size & position and spatial resolution
- imaging

Giavalisco+ 1996

- Data: 21 galaxies observed by IUE
- Results: 1) W(Lyα) and Lyα/Hß do not correlate with extinction or [O/H]. 2) ISM geometry is dominant effect

Scarlata+ 2009

- **Data:** 31 z=0.3 emitters identified by GALEX
- Results: Lyα/Hα & Hα/Hß well reproduced by clumpy dust screen

Kunth+ 1998

- **Data:** 8 galaxies observed with HST/GHRS
- Results: 4 emitters have HI & HII offset by up to 200 km/s

Atek+ 2009

- **Data:** I Zw 18 observed with HST/STIS
- **Results:** 1) If outflows present, f_{esc} determined by N_{HI} and t_a . 2) Otherwise, absorption possible in static/low-v case with a high N_{HI} .

Mas-Hesse 2003

- **Data:** 3 galaxies observed with HST/STIS
- Results: spatial variations of Lyα

Ostlin+ 2009

- Data: HST WFC3/UVIS+ACS/SBC optical+FUV images
- Results: aperture size and spatial resolution matter

Empirical Estimate of Lyα Escape Fraction

 $fesc(Ly\alpha) = f(Ly\alpha) / 8.7 \times f(H\alpha)cor$

- fesc(Ly α) varies from 0.5 to 100 %
- fesc is sensitive to E(B-V)gaz

 $f_{esc}(Ly\alpha) = 10^{-0.4 \ k(Ly\alpha) \ E(B-V)}$ $k(Ly\alpha) \sim 12.7 \pm 0.4$

•Some galaxies have $fesc(Ly\alpha) > fesc(cont)$

→ Evidence for an inhomogeneous medium ? Different extinction law ? (Scarlata et al. 2009)

$Ly\alpha$ observations at low z

Observed Lya line properties depend on:

- Metallicity / dust (IUE)
- Clumpiness of H I gas + dust (GALEX)
- Gas kinematics (HST)
- Column density of neutral gas, N_{HI}
- Aperture size & position and spatial resolution
- imaging

Giavalisco+ 1996

- Data: 21 galaxies observed by IUE: Lya fainter!!!
- Results: 1) W(Lyα) and Lyα/Hß do not correlate with extinction or [O/H]. 2) ISM geometry is dominant effect

Scarlata+ 2009

- **Data:** 31 z=0.3 emitters identified by GALEX
- Results: Lya/Ha & Ha/Hß well reproduced by clumpy dust screen

Kunth+ 1998

- **Data:** 8 galaxies observed with HST/GHRS
- Results: 4 emitters have HI & HII offset by up to 200 km/s (Kunth et al. 1998). 4 absorbers, no offset.

Atek+ 2009

- **Data:** I Zw 18 observed with HST/STIS
- **Results:** 1) If outflows present, f_{esc} determined by N_{HI} and t_a . 2) Otherwise, absorption possible in static/low-v case with a high N_{HI} .

Mas-Hesse 2003

- Data: 3 galaxies observed with HST/STIS
- Results: spatial variations of Lyα

Ostlin+ 2009

- Data: HST WFC3/UVIS+ACS/SBC optical+FUV images
- Results: aperture size and spatial resolution matter

The Lya Profile

From GALEX' targets

asymmetric line profiles (5/22 ~23%)

characterized by a sharp drop on the blue side, and a pronounced red wing.

This is indicative of an expanding neutral gas where the $Ly\alpha$ photons can escape easier in the red wing of the profile because they are seen redshifted by the hydrogen atoms.

$Ly\alpha$ observations at low z

Observed Lya line properties depend on:

- Metallicity / dust
- Clumpiness of H I gas + dust
- Gas kinematics
- Column density of neutral gas, N_{HI} (HST)
- Aperture size & position and spatial resolution
- imaging

Giavalisco+ 1996

- Data: 21 galaxies observed by IUE
- Results: 1) W(Lyα) and Lyα/Hß do not correlate with extinction or [O/H]. 2) ISM geometry is dominant effect

Scarlata+ 2009

- Data: 31 z=0.3 emitters identified by GALEX
- Results: Lya/Ha & Ha/Hß well reproduced by clumpy dust screen

Kunth+ 1998

- Data: 8 galaxies observed with HST/GHRS
- Results: 4 emitters have HI & HII offset by up to 200 km/s

Atek+ 2009

- Data: I Zw 18 observed with HST/STIS
- **Results:** 1) If outflows present, f_{esc} determined by N_{HI} and t_a . 2) Otherwise, absorption possible in static/low-v case with a high N_{HI} .

Mas-Hesse 2003

- **Data:** 3 galaxies observed with HST/STIS
- Results: spatial variations of Lyα

Ostlin+ 2009

- Data: HST WFC3/UVIS+ACS/SBC optical+FUV images
- Results: aperture size and spatial resolution matter

THE OBSERVATIONAL PUZZLE

NEW INSIGHT WITH HST

GHRS results by Kunth et al. (1994) :

Targeting the very metal-poor and dust-free galaxy Mk116: a damped Lyα absorption.

modelled by Atek + 2009 !!

Lyα observations at low z

Observed Lya line properties depend on:

- Metallicity / dust
- Clumpiness of H I gas + dust
- Gas kinematics
- Column density of neutral gas, N_{HI}
- Aperture size & position and spatial resolution
- imaging

Giavalisco+ 1996

- Data: 21 galaxies observed by IUE
- Results: 1) W(Lyα) and Lyα/Hß do not correlate with extinction or [O/H]. 2) ISM geometry is dominant effect

Scarlata+ 2009

- **Data:** 31 z=0.3 emitters identified by GALEX
- Results: Lya/Ha & Ha/Hß well reproduced by clumpy dust screen

Kunth+ 1998

- **Data:** 8 galaxies observed with HST/GHRS
- Results: 4 emitters have HI & HII offset by up to 200 km/s

Atek+ 2009

- Data: I Zw 18 observed with HST/STIS
- **Results:** 1) If outflows present, f_{esc} determined by N_{HI} and t_a . 2) Otherwise, absorption possible in static/low-v case with a high N_{HI} .

Mas-Hesse + 2003

- Data: 3 galaxies observed with HST/STIS
- **Results:** spatial variations of Lyα

Ostlin+ 2009

- Data: HST WFC3/UVIS+ACS/SBC optical+FUV images
- Results: aperture size and spatial resolution matter

Need for Lyα imaging

Spectroscopy can miss a large part of the diffuse Ly α component (UV not coeval with Ly α)

 \rightarrow Imaging needed

Lyα observations at low z

Observed Lya line properties depend on:

- Metallicity / dust
- Clumpiness of H I gas + dust
- Gas kinematics
- Column density of neutral gas, N_{HI}
- Aperture size & position and spatial resolution
- imaging

Many parameters control the Lyα escape

Giavalisco+ 1996

- Data: 21 galaxies observed by IUE
- Results: 1) W(Lyα) and Lyα/Hß do not correlate with extinction or [O/H]. 2) ISM geometry is dominant effect

Scarlata+ 2009

- Data: 31 z=0.3 emitters identified by GALEX
- Results: Lya/Ha & Ha/Hß well reproduced by clumpy dust screen

Kunth+ 1998

- **Data:** 8 galaxies observed with HST/GHRS
- Results: 4 emitters have HI & HII offset by up to 200 km/s

Atek+ 2009

- **Data:** I Zw 18 observed with HST/STIS
- **Results:** 1) If outflows present, f_{esc} determined by N_{HI} and t_a . 2) Otherwise, absorption possible in static/low-v case with a high N_{HI} .

Mas-Hesse 2003

- **Data:** 3 galaxies observed with HST/STIS
- **Results:** spatial variations of Lyα

Ostlin+ 2009

- Data: HST WFC3/UVIS+ACS/SBC optical+FUV images
- Results: aperture size and spatial resolution matter

Why Lyman alpha extensive imaging?

Imaging allows to:

- study the spatial distribution of $\mbox{Ly}\alpha$
- identify large scale diffuse Lyα emission from resonant scattering
- study porosity, inclination etc...
- study Lyα vs local conditions:
 - ionizing stellar population age
 - Uv continuum luminosity
 - dust, Hα

- etc

- 90% of flux in diffuse compnt.
- use simulations (P. Laursen, A. Verhamme) to compare model and real galaxies
- + COS and 3D spectroscopy, SED, NIR, radio data etc...

HST LY α Imaging

Haro 11

Atek et al. 2008 Ostlin et al. 2009

Lya image does NOT ressemble the Ha image

- Large halo of diffuse
 Lyα emission with
- 90% of the total flux!

 → Evidence for the resonant scattering of Lyα
 photons into the ISM

> Haro11: Ly α , H α , UV, 8x8 kpc

LARS (> 2009) : The Lya Reference Sample

The driving parameters?

- Goal: create a reference sample for a complete analysis of Lyα properties (distribution, radiation transfer, effects of dust and neutral gas, kinematics, inclination...)
- Sample selection: GALEX + SDSS

Results: *M.* Hayes+ 2013a, ApJ.L, 765, 27 & M. Hayes + 2013b, ApJ. subm, arXiv:1308.6578

Who is LARS ?

Göran Östlin, Stockholm, PI Matthew Hayes, Stockholm, PI Angela Adamo, Heidelberg Florent Duval, Stockholm Lucia Guaita, Stockholm Thomas Marquart, Stockholm Andreas Sandberg, Stockholm Hakim Atek, Lausanne Daniel Kunth, IAP, Paris **Claus Leitherer, STScl** Miguel Mas-Hesse, Madrid Hector Oti, Unam

Daniel Schaerer, Geneva Anne Verhamme, Geneva Peter Laursen, Copenhagen John Cannon, Macalester Stephen Pardy, Macalester Jens Melinder, Stockholm Thœger Thorsen, Stockholm Ivana Stoslakova, Geneva **Emily Freeland, Stockholm** Pieter Gruyters, Uppsala Christian Herenz, Potsdam Martin Roth, Postsdam

LARS sample selection

- GALEX + SDSS database
- Z = 0.028 to 0.110 and z = 0.134-0.192
- EW (Hα) > 90 Å (14 emission-line galaxies, strong SFR)

- 3 ACS/SBC long pass filters
- WFC3 U(F336W), B(F438W), I(F775W)
- H α and H β from WFC3 or ACS ramp filters

Haloes (but 6 orbits per targets)

COS spectroscopy (Artipova et al. 2013)

Haloes

Haloes

Haloes

Haloes (mapping HI)

$FUV + H\alpha + Ly\alpha$

Lya profiles consistent in shape with those of HI envelopes (Bigiel & Blitz 2012)

Lya brightness profiles

FUV SB close to n=4 As for merger remnants (e.g. Schweizer+1982)

Ly α SB close to n=1 a much shallower exponential profile. As for Ly α of Steidel+2011

but also as for HI (Bigiel & Blitz +2012)

>> does Lya trace the HI
distribution?

Ly α characteristic sizes are ~ twice those of UV and H α

Haloes : consequences at high z

Some Ly α radial growth curves flatter, some do not. \rightarrow Will be flux losses if placed at z > 2, but not enormous (1 arc sec slit)

Lyα escape

Lyman alpha emitting galaxies are : lower mass, younger, more compact, higher sSFR, bluer, less dusty, lower metallicity, and more strongly ionizing than non Lya emitting galaxies.

10 Sept 2013

Lyα haloes

Large Lyα haloes occur in : **lower mass**, **younger**, **more compact**, **higher sSFR**, **bluer**, **less dusty**, **lower metallicity**, and **more strongly ionizing** than non Lyα emitting galaxies.

10 Sept 2013

From (alas!) a too small sample:

1. Haloes

- **a.** Lya is extended relative to the UV and Ha
- **b.** higher escape fractions <-> larger haloes
- **c.** 'normal' high-z apertures don't cause huge flux loss

2. Global properties

Lya stronger, and haloes more extended in galaxies with :

- * lower age
- * lower mass
- * smaller sizes
- * fewer metals and less dust
- * higher sSFR
- * harder UV flux
- **3. eLARS** will complete a larger (15 more objects) and more representative sample of Lyα physics in local universe star forming galaxies

What are z=0.3 LAEs?

- 1. Compared to a UV continuum selected sample (LBG analogs?) the average LAE at this redshift interval has:
 - lower metallicity
 - bluer colors
 - smaller sizes
 - less extinction

z=0.3 LAE sample

z=0.3 UV continuum sample

 Evidence that LAEs at z=0.3 are in an early stage in a star-burst when the star-forming gas is still relatively metal poor and the starforming region is small

Cowie et al. 2011

What are z~1 LAEs and why studying them? ?

- z~1 corresponds to a ~8 billion-year lookback time, i.e. when the universe was only 40% of its current age
- z~1 marks the start of the end of the era of high star-formation rates. Lowest redshift where LAEs with luminosities analogous to high-z LAEs can be found.
- z~1 is an era that can only be fully surveyed by space telescopes (i.e. with access to the rest far-UV). At z \geq 2, ground-based telescopes can observe Lyman α (1216 Å) .
- Relatively nearby population allows for detailed multi-wavelength studies to constrain their properties

Slide borrowed from S. Heap and T. Hull

High luminosity $Ly\alpha$ emitters appear at $\sim z = 0.8$

Wold et al 2013

Cowie et al. 2011

z=0 to z above 2 seems a key range in the LAE evolution: Ideally we would like to have large cleanly selected statistical samples of LAEs through this redshift interval

Wold et al. In prep

$f_{esc}(\alpha)$ evolution with z

High z LAEs

- Beyond z ~ 2 a cosmic zoo is noteworthy. Difficult to anticipate LAE or LBG from visible spectrum.
- Steidel et al.: diffuse Lyα halos: all LBGs would be LAEs if surveys were sensitive to 10 times lower Lyα surface brigthness thresholds; similarly, essentially all LBGs would qualify as LAEs.

EXTENDED HALDES IN HIGH-Z GALAXIES

Steidel et al. 2011

stacking 92 objetcs 900 hours integration at Keck! Lyα more extended that UV continuum **Aperture effects** Selection function, EW distribution, Luminosity function, confirmation statistics, could all be 'broken'

Lyα Haloes at high z

Matsuda+2012

Extension is function of environment

Extended Ly-alpha, as well as galaxy statistics trace out gas distribution in circumgalactic regions

High z LAEs

- Beyond z ~ 2 a cosmic zoo is noteworthy. Difficult to anticipate an LAE or LBG from visible spectrum.
- Steidel et al.: diffuse Lyα halos: all LBGs would be LABs if surveys were sensitive to 10 times lower Lyα surface brigthness thresholds; similarly, essentially all LBGs would qualify as LAEs.
- Sources responsible for cosmic reionization remain ellusive. Probably enough low-luminosity galaxies are in place at z ~ 8 (Bouwens et al 2013). But what is their ionizing output?

Testing the ionizing emissivity of mid and low-z galaxies is a pressing concern.

- At < 1 opaque to their LyC (Cowie, Siana, McGreer, Leilet....)
- At > 3 they emit a copious amount of LyC (Steidel, Nestor, Iwata..)
- (At very high z > sky lines!!! wait for JWST for detecting Lyα in LBGs candidates unless we know the z and use the right NB filter).

Ly-alpha future missions

- Why? Lyα being a resonant line its photometry is biased.
 High z science MUST calibrate against nearby galaxies.
- Studies at z~ <0.8> will tell us huge amount about cosmic evolution (across ³/₄ of the Universe age), and provide a remarkable sample for detailed work.
- Reionisation: find out about the link, if any, between Lyα and LyC in intrinsically faint SF galaxies.

MESSIER, WSO, CUBES ...

Lya future experiments

- Objective of future UV missions and telescopes is to determine unambiguously the rest frame UV and Lyα of the galaxy population *relevant* for high-z astrophysics.
- For Lyα, to z<2 it includes blind imaging surveys using BOTH Lyα and UV continuum selections (∾1000 objects)
 - Measure faint-end slope of the LF
 - Ly α fraction among galaxies
 - How galaxies evolve and why!?
- Implies synergies with ground-based telescopes (ELTs), space-based NIR platforms (EUCLID/WFIRST, JWST) and radio ALMA and SKA

Lya future experiments

- Detailed observations in UV are necessary such as:
 - Spectroscopy: kinematics in the ISM, gas covering fraction, diagnostics of the massive stellar population:
 - Follow up: Target very faint objects by concentrating on the nearest for detailed studies. From z=0.5 to 0.01 the luminosity distance is reduced by 60, sampling scale by 30, SB dimming by 4....>> to reach faintest limits of the galaxy LF we need to go down to 1216 A.

Basic technical requirements

- Wavelength coverage: (from Lyα to U band : 0.2 to z~<2) hence 1500 – 3000 Å. For high-resolution instruments go down to 1200 Å.
- Observing modes:
 - Surveys: slitless spectroscopy (R 100); NB filters or *pseudo*-combined NB synthetized from long pass filters.
 - Wide field imaging (*eg* MESSIER)
 - Intermediate resolution spectrograph: using similar gratings as for STIS and COS (R> 10 000) (WSO)
 - Multiplexing with configurable slits, micro shutter arrays or IFU would be revolutionary in the UV.
 - At z < 0.1 an imager is vital (diffuse light). Spectroscopic aperture never captures diffuse Lyα component

Basic technical requirements

 Sensitivity (to well constrain LF): reach 1/10 L_{*} hence: f = 2x10⁻¹⁶ erg s⁻¹ cm⁻²

(22 hours at the HST with ACS/SBC for a S/N of 5 if point source)

need a large UV-optimized mirror or high QE detectors

• Field of view:

interpolating between z=0.3 and z=2 to z=0.8 we can estimate the density of galaxies namely.....

z=0 to z above 2 seems a key range in the LAE evolution: Ideally we would like to have large cleanly selected statistical samples of LAEs through this redshift interval

Wold et al. In prep

Basic technical requirements

 Sensitivity (to well constrain LF): reach 1/10 L_{*} hence: f = 2X10⁻¹⁶ erg s⁻¹ cm⁻²

(22 hours at the HST with ACS/SBC for a S/N of 5 if point source

need a large UV-optimized mirror or high QE detectors

• Field of view:

interpolating between z=0.3 and Z=2 to z = 0.8 we can estimate the density of galaxies:

volume 600 000 Mpc⁻³ to be explored

FoV > WFPC3 but < *GALEX*

Observations of Ly α emitters in the Local Universe will remain possible only as long as ACS, STIS and COS remain operational on the HST.

The post-HST era will be a *dark age* for local Universe UV astronomy, unless some ongoing projects mature and become a reality.

Thanks to T. Hull and S. Heap