

ESA COSMIC VISION – "THE FOUR THEMES"

Planets and Life - The Solar System - Fundamental laws -The Universe

EUROPEAN ULTRAVIOLET-VISIBLE OBSERVATORY

Thierry Appourchaux – IAS France; Martin Barstow – University of Leicester UK; Mathieu Barthelemy - IPAG, France; Fréderic Baudin - IAS, France: Stefano Benetti - OAPD- INAF, Italy: Pere Blay -Universidad de Valencia, Spain; Noah Brosch - Tel Aviv University, Israel; Enma Bunce - University of Leicester, UK; Domitilla de Martino - OAC-INAF, Italy; Ana Ines Gomez de Castro -Universidad Complutense de Madrid, Spain; Jean-Michel Deharveng – Observatoire Astronomique Marseille-Provence, France: Roger Ferlet - Institute d'Astrophysique de Paris, France Kevin France - University of Colorado, USA; Miriam García – IAC Spain; Boris Gaensicke - University of Warwick, UK; Cecile Gry -Observatoire Astronomique Marseille-Provence, France, Lynne Hillenbrand – Caltech, USA; Eric Josselin - University of Montpellier, France; Carolina Kehrig – Instituto de Astrofísica de Andalucía, Spain; Laurent Lamy - LESIA, France; Jon Lapington -University of Leicester, UK; Alain Lecavelier des Etangs – Institute d'Astrophysique de Paris, France; Frank LePetit – Observatoire Paris-Meudom, France; Javier Lopez Santiago - Universidad Complutense de Madrid, Spain; Bruno Milliard- Observatoire Astronomique Marseille-Provence, France; Richard Monier -Université de Nice, France; Giampiero Naletto - University of Padova, Italy; Yael Nazé - Liège University, Belgium; Coralie Neiner -LESIA, France; Jonathan Nichols - University of Leicester, UK Marina Orio – OAPD-INAF, Italy; Isabella Pagano – OACT-INAF, Italy; Céline Peroux - Observatoire Astronomique Marseille-Provence, France; Gregor Rauw – University of Liège, Belgium; Steven Shore – University of Pisa, Italy ; Marco Spaans - Kaptein Astronomical Institute, The Netherlands ; Gagik Tovmassian - Instit. Astr. Sede Ensenada-UNAM, Mexico; Asif ud-Doula - Penn State University, USA; José Vilchez – Instituto de Astrofísica de Andalucía, Spain and www.nuva.eu

"Building galaxies, stars, planets and the ingredients for life between the stars"

KEY SCIENCE TO BE ADDRESSED WITH **CUVO**

- + transport processes in the intergalactic medium over 80% of the universe lifetime
- + the interstellar medium (ISM)
- + planet formation and the emergence of life
- + the solar system
- + stellar physics
- + fundamental physics testing the variation of the fine structure constant at z<2

ESA Workshop, Paris 2013: EUVO presentation, Gómez de Castro et al.

THE EARTH CONNECTION

+ Earth's atmosphere is in constant interaction with the interplanetary medium and the solar UV radiation field. Observation of planets, interplanetary medium, stellar magnetic activity provides the phenomenological baseline to understand the Earth atmosphere in context.

- A 50-100 times improvement in sensitivity would enable the observation of the key atmospheric ingredients of Earth-like exoplanets (carbon, oxygen, ozone), providing crucial inputs for models of biologically active worlds outside the solar system.
- + Solar system planetary research is fundamental for **understanding atmospheres as global** systems, including the Earth.

Time-domain spectro-imaging observations of atmospheres

ESA Workshop, Paris 2013: EUVO presentation, Gómez de Castro et al.

Time-domain spectro-imaging observations of surfaces and small bodies

Spatially-resolved albedo maps and characterization of regolith properties for all objects larger than 50 km.

Mineralogy, organics, geochemical provinces on planetary surfaces.

Origin of comet-like activity.

Volatile transport processes

Origin, composition and evolution of planetary rings.

Shape, rotation and collisional history.

Spatial and size distribution, and chemical composition of comets and 1000s of TNOs.

Comparison with debris disk studies.

EXOPLANETS IN THE UV

Observations in the UV and visible wavelength are powerful diagnostics of the structural, thermal, and dynamical properties of planets, be they Solar System or extrasolar.

The most recent estimate:

GAIA will discover some hundred transiting Hot Jupiters (P < 5 d) to G < 14, and a few thousand to G < 16. These will be prime targets for detecting atmospheric constituents through absorption spectroscopy, thereby characterizing the chemical and physical properties of the atmosphere.

A sensitivity of F=10⁻¹⁷ ergs/s/cm²/A in 10⁴s with R=100,000 will allow studying the dynamics of mass loss in hot Jupiters

A high sensitivity, moderate spectral resolution instrument in the near-UV would allow us to observe the Rayleigh scattering of H_2 , haze and possibly CO_2 and N_2 atmospheres

Evolution disk planets

- The dust disc clearing timescale is expected to be 2-4 Myr, however recent results indicate that inner molecular discs can persist to ages ~10 Myr in Classical TTSs.
- + H₂ probes gas column densities <10⁻⁶ g cm⁻², making them the most sensitive tracer of tenuous gas in the protoplanetary environment.

from Ingleby et al 2011, ApJ,743, 1051; France et al 2012, ApJ, 756, 17

A far-UV survey of H_2 and CO disks (R=3000, F=10⁻¹⁶ erg/s/cm²/A in 10³s) will allow studying disk evolution (e.g. Orion (1Myr) -> Tucana (30 Myr))

UV IRRADIATED ENVIRONMENTS IN LIFE EMERGENCE, EVOLUTION AND STABILITY

+ how do they evolve?

06/11/2013

+ which are the conditions for stability?

Star-disk interaction: the gravito-magnetic engine

A single spectrum in the UV range contains information about all the physical components - atmosphere, magnetosphere, outflows (Solar-like winds, jets), accretion flow, inner disc structure, residual gas in the young planetary system – and their evolution into exoplanetary systems

> Engine Evolution and habitability

+ The "habitability" of planets depends on the central star magnetic activity, which strongly influences the chemical (and possibly biochemical) processes at the surface of the planet.

og(F(CIV)/

 Engine physics seems to extend smoothly into substellar scales:

from Gómez de Castro and Marcos-Arenal 2012

Brown dwarf

n sequence

 $\log(L_*/L_o)$

Pre main

SUAm

40283

At least, a factor of 10 improvement on sensitivity is required (reaching 10^{-17} erg/s/cm²/A with R≈20,000) to observe the faintest components of the engine in a sample large enough. This represents a factor of ten improvement over current facilities (HST).

-4

distance to MSCSs

Engine evolution Habitability

- Reaching NUV=22.3 mag will enable detecting active brown dwarfs to 150 pc
- A high sensitivity, low background equivalent flux level (10⁻¹⁸ erg/s/cm²/A in 10⁴s) equipped with photon counting detectors would enable a survey exoplanetary host M-stars within 50 pc (and K-dwarfs to 200 pc).

Distribution of star forming complexes around the Sun Arright Claval Pleider Theref Supervised CS1228-00

V=13-15 to reach the **Star Formation Belt** with R>20,000 and integration times < 300 s for key low mas stars

STELLAR PHYSICS

Open questions:

- Fossil vs dynamo origin of magnetic field
- Mass loss, outbursts, flares
- Wind coupling
- ✤ Stellar evolution
- Rotational evolution
- ✤ Tidal interaction
- Accretion physics
 - Interacting binaries
 - Compact binaries
- White dwarfs
- Supernovae

Il fields the land ysics would benefit from EUVO: his of non-ence stars Binary stars (com, eac binaries, Be-X-ray binaries,...) hain sequence stars (T Tauri, Herbig stars...) binaries (white dwarfs, neutron stars, magnetars...)

Need: hig.

- + optical pr
- + UV probes
- + polarimetry

. acture,

With UV+optical s animetric time series at high resolution, we can reconstruct the full system star + environment a the interactions.

...al

INTERSTELLAR MEDIUM

Unprecedented sensitivity permits to:

- + Extend ISM studies to other galaxies.
- + Cover a wide range of environments.
- + Study the very diffuse gas.
- Study depletion and fractionation in denser molecular cores.

Unprecedented spectral coverage from near UV to far UV permits to:

- Cover all phases of the ISM conserving many different species from molecules H2, CO neutral accession molecules H2, CO NV, OVI
- → Get simultaneous access to the HI Lyman series and the H2 Lyman and Werner bands → abundances, series dustratios, molecular fraction.
- Couple dust and gas studies of the same sightlines.

"Nature" vs "nurture" in galaxy evolution

Metals in the intergalactic space

Metals in the intergalactic space

At 0.2 < z < 2.0, lines of Ne VIII, Na IX, Mg X, and Si XII fall in the 900—3200 Å band. Ions with ionization potentials comparable to the X-ray absorbing gas detected in bright, local AGN.

A UV spectrograph with R~20,000 and a throughput of 5x COS would enable the detailed kinematical study of these species in hundreds of AGN at z > 0.2 more sensitively than any proposed X-ray telescope.

FUV accessibility to OV a key tracer to circumganetic gas

Images from Tumlinson et al. 2013 (arXiv1209.3272v1)

An 8m telescope could observe more than 10 QSOs behind every galaxy out to 10 Mpc

THE MISSION (Orbit: HEO or L2; Lifetime: 15 – 20 years; Range: 900-7000 A)
International collaboration: US-Russia-India-Canada-Mexico-China

		IMAGING		INTEGRAL FIELD SPECTROSCOPY			SPECTROSCOPY		4m	8m
		FoV (arcmin)	Angular Res. (arcsec)	FoV (arcmin)	Angular Res. (arcsec)	R	R	Pol.		
Cosmic Web	IGM Star Formation	10	<0.01	10	<0.01	20,000	20,000		X	10 Mpc
Stars-to- Planets	Engine Disks Habitability	3	<0.01	10 10	1 1	1000 3000	20,000 30,000	V	Hya/Tau Orion	Tau/Orion M@50pc
Exo- planets	Detection Characterization •Atmosphere •Magnetosphere						100,00 0			50pc (K type)
Solar System	Atmospheres Magnetosphere	10" 1"-2"	<1" <0.01"		0.1	3000	100,00 0	*	Saturn	Uranus
Stars	Envelopes Magnetic Binaries Supernovae	10	<0.01	10		500-1000	100,00 0 100,00 020,00 0	* *		
Cosmo- logy	α measure	ES	A Worksho	p, Paris 201	3: EUVO pre	sentation, Go	50,000 mez de Ca	stro et al.	Z~0.8	Z=2

+UV Key Science Life emergence Star Formation Planetary Science Cosmic Web Stellar Physics The Mission Technologies

Instrument technology development

Enhanced optical coatings

- + Spectral coverage: Lyman limit to NIR
- Net factor 2-3 gain in overall efficiency of telescope plus spectrographs 2-3 reflections in each subsystem)

ang

Enhanced detector performance

- + Raise QE to 80-90%, μs timing high dyn
- MCPs and photocatbode co
- CCD/CMOS chip development

Key European der mology companies

- Zeiss, gratings and oput
- + Photonis, MCPs and photocathodes
- + e2v, CCDs and CMOS
- + HORney John Yvon, gratings and coatings

bright linits), long term stability

Telescope Concept

Ariane V fairing limit is 4m monolithic mirror

Deployable systems required for 8m

+ James Webb concept to fly in 2018

Refinements needed for UV accuracy requirements (cf. infi

+ Off-axis elliptical mirror to the largest size accept

and la

perture

THANK YOU

"Building galaxies, stars, planets and the ingredients for life between the stars" Pictures Credits (each slide images numbered from left to right - top to bottom)

Slide 1 . 1: Saturn Aurora- HST-STIS – PRC98-05-ST Sc OPO – Jan. 1998 – J. Trauger, JPL and NASA

2: WSO-UV Project3: HH-47 J. Morse/STScI, and NASA/ESA4: WSO-UV Project

5: Jupiter Aurora . NASA & John T. Clarke (U. Michigan)

Slide 2. 1: GALEX

Slide 3. 1: Active regions of star formation at redshift z = 12.5, triggered by H2 cooling shown in blue (Ricotti, 2002a,b; 208)

2: Hayes et al. 2010, A&A 509, L5

3: HH-47 J. Morse/STScl, and NASA/ESA

4: Ingleby et al. 2011, ApJ 743,1051; France et al. 2012, apJ, 756, 17

5: http://agaudi.files.wordpress.com/2008/09/dna_overview_es.png

6: Savaglio S. et al., 2006, American Astronomical Society Meeting 207

7: Gómez de Castro et al. 2013 (submited)

8: Jupiter Aurora NASA & John T. Clarke (U. Michigan)

9: http://www.eso.org/public/images/eso0407a/

Slide 4. 1: http://reinep.wordpress.com/2012/11/08/scientists-earths-protective-shield-is-now-failing/

2: Illustration of solar wind impact on Earth's magnetosphere : NASA

3: Aurora Borealis - author: United States Air Force photo by Senior Airman Joshua Strang

Slide 5. 1: Our solar system http://solarsystem.nasa.gov/planets/

Gnedin, & Shull

Pictures Credits (each slide images numbered from left to right - top to bottom)

Slide 6. 1: Image of Jupiter's auroras observed in UV light by the Hubble Space Telescope. NASA and JT Clark

- 2: WTP: Jupiter: Red Spot Turbulence, pds.jpl.nasa.gov
- 3: Transport of water vapour in the Martian atmosphere. ESA/AOES Medialab

4: Schematic of the Jovian magnetosphere showing the Io Plasma Torus (in red), the Neutral Sodium immediately surrounding lo (in yellow), the Io flux tube (in green), and magnetic field lines (in blue). Graphic created by John Spencer - http://www.boulder.swri.edu/~spencer/jupmag5na.jpg

5: Illustration of solar wind impact on Earth's magnetosphere . NASA

6: Fountains of Enceladus - NASA Photojournal, Jet blue, http://photojournal.jpl.nasa.gov/catalog/PIA0838

7:Provided by Matthieu Barthelemy & Jonathan Nichols

8: Provided by Matthieu Barthelemy & Jonathan Nichols.

9: Artist conception of the elongated, rugby ball shape of the outer layers of the extended upper atmosphere of HD 209458b, and of its escaping, comet like tail. Hubble ESA Information Centre, Garching, Germany

Slide 7. 1: Composite of five asteroids that have been imaged by spacecraft, to scale. (Mathilde, Eros, Gaspra, Ida and Dactyl, labelled), www.galaxypix.com

2: Discovering plumes on Io, taken in March of 1979 by Voyager 1. NASA, www.nasaimages.org

3: Image of comet C/1995 O1 (Hale-Bopp), taken on 1997 April 04, E. Kolmhofer, H. Raab; Johannes-Kepler-Observatory, Linz, Austria

4: The inner Solar System, from the Sun to Jupiter. This image is based on data found in the en:JPL DE-405 ephemeris, and the en:Minor Planet Center database of asteroids (etc) published 2006 Jul 6. The image is looking down on the en:ecliptic plane as would

have been seen on 2006 August 14. It was rendered by custom software written for Wikipedia.

5:Provided by Matthieu Barthelemy & Jonathan Nichols

6: simulated image of Saturn's rings, author NASA/JPL

7:Provided by Matthieu Barthelemy & Jonathan Nichols

8: Provided by Matthieu Barthelemy & Jonathan Nichols

9: Coronagraph of star Fomalhaut showing disk ring and location of extrasolar planet b. NASA, ESA, P. Kalas, J. Graham, E. Chiang, E. Kite (Univ. of California, Berkeley), M. Clampin (NASA Goddard Space Flight Center), M. Fitzgerald (Lawrence Livermore National Laboratory), and K. Stapelfeldt and J. Krist (NASA Jet Propulsion Laboratory)

+UV Key Science Life emergence Star Formation Planetary Science Cosmic Web Stellar Physics The Mission Technologies

Pictures Credits (each slide images numbered from left to right - top to bottom)

Slide 8. 1: Jupiter.Aurora.HST.UV. John T. Clarke (U. Michigan), ESA, NASA 2: Auroral formation on Saturn. Jonathan Nichols, NASA, ESA, University of Leicester

- 2. Autoral formation on Saturn. Sonathan Michols, NASA, ESA, Oniversity of Leicester
- 3: Bands and a new dark spot in Uranus' atmosphere. NASA/Space Telescope Science Institute

Slide 9 .1: Artist conception of the elongated, rugby ball shape of the outer layers of the extended upper atmosphere of HD 209458b, and of Its escaping, comet like tail. Hubble ESA Information Centre, Garching, Germany

Slide 10.1:Ingleby et al. 2011, ApJ 743,1051; France et al. 2012, apJ, 756, 17

Slide 11.1: HH 111 HST-WFPC2-NICMOS - Credit: NASA & B. Reipurth (CASA-University of Colorado) -STScI-PRC00-05 2: The dinamyc HH 30 disk and jet, HST-WFPC2. Credit: NASA and A. Watson (instituto de Astronomía, UNAM, Mexico) – STSCI 3: NASA

4: Sun magnetic fields. NASA

Slide 12.1: WSO-UV Project

2,3: Gómez de Castro & von Rekowski 2011, MNRAS, 411, 8494: Provided by Ana I. Gómez de Castro

Slide 13.1, 2: Gómez de Castro and Marcos-Arenal, 2012, ApJ, 749, Issue 2, art.id. 190

Slide 14.1:Gómez de Castro et al. , ApJ, 2013 (submitted) 2:Provided by Ana I. Gómez de Castro

Slide 15.1: Copyright by Scott Gregory

Slide 16.1: WSO-UV Project

Pictures Credits (each slide images numbered from left to right - top to bottom)

Slide 17.1: Portion of the cosmic web that spans almost 900 millions of light-years across - Klaus Dolag, Universitäts Sternwarte

2,4: Wright et al. 2012. Submitted to the 2010 Astronomy & Astrophysics Decadal Survey

3: Provided by N.Brosch

5: Distribution of dark matter. NASA, ESA, and R. Massey (California Institute of Technology

Slide 18.1: NGC 300 . NASA/JPL-Caltech/Las Campanas

2: NGC 1427 A . NASA, ESA, and The Hubble Heritage Team (STScI/AURA) 3: Galaxy Zoo SDSS - Credit: HST

Slide 19. 1: XMM-Newton view of the Coma cluster . ESA 2: ASCA spectrum

3: Gas motion on various scales-Ohashi et a. 2012

Slide 20.1,2:Tumlinson et al. 2013

Slide 21. 1: http://nssdc.gsfc.nasa.gov/image/spacecraft/oao.jpg

2: http://sci.esa.int/iue/28875-the-iue-spacecraft/

3: Hubble Space Telescope – NASA

4: http://fuse.pha.jhu.edu/facts/miss_rep66.html

5: http://photojournal.jpl.nasa.gov/catalog/PIA04234

6: http://www.wso-uv.es/index.php/galeria-imagenes.html

Slide 24.1: James Webb Space Telescope: large deployable cryogenic telescope in space, Lightset et al. Opt. Eng. 51(1), 011003 (Feb 03, 2012). doi: 10.1117/1.0F.51.1.011003

2: JPL-NASA

Slide 25.1: Fresnel prototype - courtesy Laurent Koechlin 2: Courtesy Laurent Koechlin