

Department of Physics & Astronomy

Far-UV spectroscopy of white dwarfs

M.A. Barstow

(collaborators: J. Barrow, J. Barstow, J. Berengut, S. Casewell, V. Flambaum, J. Holberg, I. Hubeny, A. Ong, S. Preval, J. Webb)

Introduction

- Hot white dwarfs contain significant quantities of metals, including Fe and Ni
- The far-UV is the best (only) spectral range for their study
- High resolution, S/N HST/STIS studies of the fine structure constant
- A large FUSE survey of photospheric abundances

A typical hot H-rich white dwarf

Challenges in UV Astronomy - 7th October 2013

G191-B2B (H-rich DA)

- Best-studied DA with S/N~50-100
 - Preval et al. 2013, MNRAS, in press
- T_{eff} = 52,500 ± 900K, log g = 7.53 ± 0.09
- Rich (for a white dwarf) in metals C, N, O, AI, Si, P, S, Fe, Ni, Ge
- ~950 lines present in FUSE & HST/STIS spectra

Challenges in UV Astronomy - 7th October 2013

Fine structure constant (α) variation

- Coupling constant characterising strength of the electromagnetic interaction
- High gravitational field of white dwarf results in very small (but potentially detectable) shift in wavelength
- Effect larger for high Z atoms (i.e. Fe, Ni!)

© Julian Berengut 2013

Berengut et al. Phys Rev Letters (2013)

			W/D0310 600	W/D16351530	W/D1337±701	W/D05121226	WD0041-092	WD0905-724	WD0457-103	WD2043-635	WD2014-575	WD0106-358	WD2020-425	WD1734+742	WD1041+580	WD0252-055	WD1019-141	WD0830-535	WD0147+674	WD1620+647	WD0809-728	WD1844-223	WD0235-125	WD0549+158	WD0320-539	WD0353+284	WD1917+509	WD0603-483	WD1942+499	WD0236+498	WD0050-332	WD2124+191	WD0416+402	WD1021+266	WD0937+505	WD1636+351	WD1603+432	WD1109-225	WD1845+683	WD1648+407	WD2257-073	WD1615-154	WD1254+223	WD1611-084	WD2111+498	
т	eff	τοτοτ	16101		20435	22750	24900	25398	25540	25971	26579	28580	28597	28795	29016	29120	29330	29330	30120	30184	30585	31470	32306	32780	32860	32984	33000	33040	33500	33822	34684	35000	35227	35432	35552	36056	36257	36750	36888	37850	38010	38205	38205	38500	38866	
С	,	U	ιι	J C	γ L	ι	J	υι	U	U	U	D	U	D	U	U	D	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	D	U	U	U	U	U	U	U	U	U	D	U	ι
S	i	U	ι	J C) C	γ	J	U	U	U	U	D	U	D	U	D	U	U	U	U	U	U	U	U	U	U	D	U	D	U	U	U	U	D	U	U	U	U	U	U	U	U	U	D	D	ι
Ρ	ļ	U	ιL	J C) U	ι	J	υι	U	U	U	D	U	U	U	D	D	U	U	U	U	U	U	D	U	U	D	U	D	U	D	U	u	D	U	U	U	U	U	U	U	U	U	D	D	ι
S		U	ιι	ι	ι	ι	J	υι	U	U	U	U	U	U	U	U	D	U	U	U	U	U	U	U	U	U	U	U	U	U	D	U	U	D	U	U	U	U	U	U	U	U	U	U	D	ι
WD1550+130	WD1302+597	WD0659+130	WD1950-432	WD1024+326	WD0346-011	WD1440+753	WD1800+685	WD2004-605		WD0715-704	WD2000-561	WD1631+781	WD0131-164	WD1029+537	WD1819+580	WD0802+413	WD2152-548	WD2321-549	WD0001+433	WD1528+487	WD2011+398	WD1040+492	WD0004+330	WD2124-224	WD1314+293	WD0226-615	WD2309+105	WD1921-566	WD0354-368	WD2116+736	WD1725+586	WD1234+481	WD2331-475	WD0501+524	WD0455-282		W/D0037-836	W/D1711+668	WD0621-376	WD0232+035	WD0229-481	WD2211-495	WD1342+442	WD2146-433	WD1056+516	WD2350-706
39910	39960	39960	41339	41354	42373	42400	43701	44200	11000	44300	44456	44559	44850	44980	45330	45394	45800	45860	46205	46230	47057	47560	47936	48297	49435	50000	51300	52946	53000	54486	54550	55570	56682	57340	08085		лолол	60900	62280	62947	63400	65600	66750	67912	68640	00569
U	U	U	U	U	U	U	U	U	ι	J [U	U	U	D	U	U	U	U	U	D	U	U	U	U	U	U	U	U	U	U	U	U	D	U	ι	ι	J I	5 (JI	U	U	D	υι	UI	U
U	U	U	D	U	U	U	U	U	ι	J C)	U	D	U	D	U	U	D	U	U	D	U	U	D	U	U	D	U	U	U	U	U	D	D	D	ι	JU	J I	ы	D I	DI	D	DI	D	u	D
U	U	U	U	U	U	U	U	U	ι	J	5	U	D	U	D	U	U	D	U	U	D	U	U	D	U	U	D	U	U	U	U	U	D	D	D	U	ι	J I	ы	D I	DI	D	DI	D	U	D
U	U	U	U	U	U	U	U	U	ι	J		U	U	U	D	U	U	D	U	U	D	U	U	U	U	U	D	U	U	U	U	U	D	D	D	ι	ι	J	ы	D I	DI	D	DI	D	u	D

FUSE survey of composition (89 stars)

Temperature Range (K)

Conclusions

- Fine structure constant
 - Need improved $\lambda\lambda$ accuracy
 - More high S/N spectra... range of gravities
- White dwarf abundances
 - Metals present in some WDs at all $\rm T_{eff}$
 - C is depleted cf. Si... rocky material?
 - Radiative levitation is not dominant effect
 - WDs accreting from debris