The Structural Properties of Milky Way Dwarf Galaxies

Ricardo Muñoz (Universidad de Chile)

Collaborators:

Marla Geha (Yale) Patrick Côté (HIA/DAO) Peter Stetson (HIA/DAO) Josh Simon (Carnegie) George Djorgovski (Caltech) Felipe Santana (U. de Chile)

2004: Eleven known Milky Way satellite galaxies. Visual searches provide no evidence for a larger population . . . (Simon & Blitz 2002, Willman et al. 2002, Whiting et al. 2002)

THE NEW MILKY WAY DWARF GALAXY LANDSCAPE

The Satellite Numbers: Classical dSphs = 11 Ultra-Faint dwarfs = 17

28

To SDSS depth, full sky = $11 + 4x17 \approx 80$

To LSST depth, full sky > 400 MW dwarfs

	<u>Name</u> <u>Year</u>	· Discovered
	LMC	B.C
	SMC	B.C
	Sculptor	1937
	Fornax	1938
	Leo II	1950
	Leo I	1950
	Ursa Minor	1954
	Draco	1954
	Carina	1977
1	Sextans	1990
	Sagittarius	1994
	Ursa Major I	2005
	Willman I	2005
	Ursa Major II	2006
	Bootes I	2006
	Canes Venatici I	2006
	Canes Venatici II	2006
	Coma Berencies	2006
	Segue I	2006
	Leo IV	2006
	Hercules	2006
	Leo T	2007
	Bootes II	2007
	Leo V	2008
	Segue II	2009
	Pisces I	2009
	Bootes III	2009
	Pisces II	2010

from http://chandra.as.utexas.edu/~kormendy/dm.html

WHY DO WE CALL THEM GALAXIES?: KINEMATICS

UFDs seem to be the most dark matter dominated systems in the Universe!

Wolf et al. (2010)

NEW LUMINOSITY REGIME POSES A SERIOUS CHALLENGE TO DO A PROPER PHOTOMETRIC CHARACTERIZATION.

NEW LUMINOSITY REGIME POSES A SERIOUS CHALLENGE TO DO A PROPER PHOTOMETRIC CHARACTERIZATION.

A NEW DEEP SURVEY (CFHT/MAGELLAN)

COMPARISON BETWEEN SDSS Y MEGACAM

Muñoz et al. (2014)

Muñoz et al. (2014)

Muñoz et al. (2014)

Muñoz et al. (2014)

Muñoz et al. (2014)

THE FUTURE

THE FUTURE

Bullock et al. (2009)

Diemand et al. (2008)

FINAL THOUGHTS

Milky Way dwarfs are good probes of dark matter and galaxy formation:

- Good targets for indirect dark matter detection experiments (Fermi, ACTs).
- Phase space density constraints.
- Good for studying galaxy formation thresholds.

However, the UFDs represent a new regime in luminosity that greatly impacts our ability to study them

•High quality, deep photometry is required to determine reliable structural parameters and to investigate their morphologies.

•CFHT/Magellan survey is nearly finished. It represents the deepest and most comprehensive database for outer halo structure. STAY TUNED.

The Future is bright, only 1% of virial volume of Milky Way has been exhaustively searched (and only northern sky)