
Martin Stringer

Galaxy sizes and morphology 
as a consequence of cosmology

Marc Heurtas-Company, Francesco Shankar, 
Francoise Combes, Greg Novak

& Ben Moster



Complimentary perspectives on galaxy formation



Complimentary perspectives on galaxy formation

Archeological



Complimentary perspectives on galaxy formation

Archeological Evolutionary



Complimentary perspectives on galaxy formation

Archeological Evolutionary

Holistic...



Complimentary perspectives on galaxy formation

Archeological Evolutionary

Holistic...



Complimentary perspectives on galaxy formation

Archeological Evolutionary

Holistic...



Martin Stringer

Mon. Not. R. Astron. Soc. 000, 1–12 (2013) Printed 30 September 2013 (MN LATEX style file v2.2)

Galaxy size trends as a consequence of cosmology

M. J. Stringer1!, F. Shankar2,3, G. S. Novak1, M. Huertas-Company2,
F. Combes1 and B. P. Moster4
1Observatoire de Paris (LERMA), CNRS, 61, Av de l’Observatoire, Paris 75014, France
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ABSTRACT
We show that the wealth of recent work on trends in galaxy sizes with mass and redshift
can be understood in terms of the influence of underlying cosmic evolution; a holistic
view which is complimentary to the usual interpretations involving the accumulation
of discreet evolutionary processes acting on individual objects. Using analytic predic-
tions from standard cosmology theory, supported with the results of the Millennium
simulations, we begin by deriving the size trends in the population of collapsed cos-
mic structures, and emphasise the important distinction between these trends and the
hierarchical assembly of individual structures. Moving on to galaxies, we argue that
the observed variation in galactic stellar mass, as a function of inferred host structure
mass, can be understood to first order in terms of natural limitations of cooling and
feedback. But whilst this fractional stellar mass content varies by orders of magnitude,
the characteristic radius of galaxies has been found to correlate strongly and linearly
with that of the host structure. Using analytic arguments, illustrated with mock pop-
ulations generated from the Millennium simulations, we then explain how these two
aspects will lead to galaxy sizes that closely follow recently observed trends and their
evolution, and verify this with direct comparison to galaxies from the COSMOS and
SDSS surveys. Thus we conclude that it may be possible to understand the observed
minimum radius for galaxies, the evolving trend in size as a function of mass for inter-
mediate systems, and the observed increase in the sizes of massive galaxies, as being
an emergent consequence of the cosmic expansion.
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1 INTRODUCTION

Observational surveys of the radial extent of galaxies are
now able to extend over many decades in stellar mass con-
tent (e.g. Ichikawa et al. 2012; Bernardi et al. 2013) and out
to redshifts of 2 and above (e.g. Trujillo et al. 2006; Ryan
et al. 2012; Barro et al. 2013; Huertas-Company et al. 2013;
van de Sande et al. 2013). These observations are allowing
us to determine the relationship between stellar mass and
radius, and follow the changes in this distribution across al-
most all of cosmic time. This has in turn prompted the ques-
tion as to which physical processes could potentially cause
the trends, and the changes in them with time.

Notably, there has been a great deal of assessment of
the likely contribution to both from mergers between galax-
ies (e.g. Trujillo et al. 2007). Some calculations, using pair
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fractions (Newman et al. 2012) and cosmological predictions
for merger rate (Nipoti et al. 2012) have tentatively con-
cluded that such collisions cannot be the sole reason for the
observed size evolution. Other estimates (Bluck et al. 2012;
López-Sanjuan et al. 2012) imply conversely that they are
dominant. Other processes such as expansion after gas ejec-
tion have also been put forward to explain the evolution (e.g.
Fan et al. 2008).

Meanwhile, there has been renewed interest in the rela-
tionship between the size and specific angular momentum of
galaxies and that of their host structures. Classic ideas by
Fall & Efstathiou (1980) on the conservation of specific an-
gular momentum from host structure to galaxy have been
reenforced by Kassin et al. (2012). Also, by matching the
abundance of galaxies and the host structures predicted by
theory, Kravtsov (2013) has shown that this implies a di-
rect linear correlation between host and galactic radii. This
is all consistent with theoretical galaxy formation pictures

c© 2013 RAS
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a limiting radius have indeed been presented, first by Be-
lokurov et al. (2007) who showed galaxies ranging over 8
magnitudes in the v-band all occupying a lower limit in half
light radius at around 100–300pc.

This clustering of systems with varying magnitude (or
stellar mass) around a common radius is precisely what has
been argued for theoretically in this section, but concern-
ing host structure radius. However, following the review of
§3.1 we can also equate this to an equivalent galactic radius
on the basis that it is the residual specific angular momen-
tum from the host structure, no matter how redistributed or
disoriented, that is ultimately responsible for retaining the
physical extent of the central galaxy.

If we apply the collective behaviour Rgal ≈ λRv to the
minimum radius derived in §3.2.1) we find that the theoret-
ical expectation for the limiting physical scale for galaxies
(forming at, and around, virial temperatures of Tc ≈ 104K)
is of order:

Rgal,min ∼ λ
Hz

(
6kBTc

µmH∆z

)1/2

∼ 440pc

(1 + zc)3/2
, (6)

where we have substituted, by way of example, the value
of λ = 0.015 found by Kravtsov (2013). As argued in
§2.1, structures virialised at recent (not necessarily current)
epochs. The effect is all the more important for these lower
mass systems systems because many are satellites. Once a
substructure of a larger virialised region, satellites become
de-coupled from the cosmology, so their overdensity would
be relative to the cosmic value at their accretion time, rather
than the current time.

Thus this 1st-order theoretical estimate evaluated for a
collapse epoch of, say, zc ∼ 1− 3, is entirely consistent with
the Belokurov et al. (2007) value of 100–300pc. If this expla-
nation is correct, such observations of families of satellites
in general could in future be considered a rough estimate of
their group’s principle formation epoch.

3.2.2 Intermediate mass galaxies

At intermediate masses, the relationship between galaxy and
host structure tightens greatly. Notably, for disks, there is
the well-established correlation between stellar mass and
characteristic velocity very close to M! ∝ v4max over two
decades in stellar mass (e.g. Miller et al. 2013). Physically,
this relationship can be understood in terms of a momentum
and energy budget from supernovae and stellar wind-driven
outflow that is similar for all systems, but a gravitational
potential barrier to outflow which varies greatly across the
range of structure masses in which galaxies are found (Math-
ews & Baker 1971; Larson 1974).

A simple analytic estimate of the combination of these
physical effects ought ideally to take into account a range
of outflow velocities (Stringer et al. 2012) and also vary-
ing gas surface density, gas fraction and disk height (e.g.
Creasey et al. 2013). However, the basic argument is that
the same kind of supernovae are acting in very different po-
tential wells. This is surely correct at some level, and can
be quantified in a basic, but instructive, way by arguing as
follows:

If some mass, Mout, has successfully escaped from the
region of the galaxy then, to have done so, it must at some

earlier stage been moving out with mean velocity ∼ vc. In
the approximation that these early stages tend to carry a
fixed specific outward momentum budget per mass of stars
formed, vw, we can then write Moutvc ≈ M!vw. Finally, in
the regime of interest in this section (intermediate host mass
with very effective cooling), we also have the constraint9

from cosmology: M! +Mout = (Ωb/ΩM)Mv, and hence:

M! ≈ Ωb/ΩM

(1/2∆z)
1/2 GHz

v4c
vw + vc

. (7)

Thus the stellar mass–characteristic velocity relation would
approximate to M! ∝ v4c at low to intermediate masses,
moving towards M! ∝ v3c as circular velocities approach the
specific momentum budget from supernovae (at which point
cooling limitations also begin to apply again, as discussed
in the next section, §3.2.3).

In the standard assumption that the characteristic ve-
locity of the galactic system is closely matched to that of
the host, we can use this feedback-driven relationship in ve-
locity (7) to write the resulting correlation between stellar
mass and host radius, for galaxies at the lower end of this
mass range:

GM! ≈ Ωb

ΩM

(
∆z

2

)3/2 H3
zR

4
v

vw
or Rv ∝ M

1/4
!

H
3/4
z

. (8)

At higher stellar mass, as supernova feedback becomes less
important, the trend will steepen, and there will eventullly
be a further transition to the most massive regime, which
we will discuss further in §3.2.3, where cooling limits become
important again. At this transition, the M!−Mv correlation
flattens, which translates to a steepening of the mass–radius
correlation. So there will be some range in mass, and ra-
dius, in which galaxies track the evolution of host structues
themselves, recovering β ≈ 1/3 and mirroring eqn. 1:

Rgal ∝
M!

1/3

H
2/3
z

. (9)

In summary of §3.2 so far, the trend in virial radius as a
function of stellar mass might be expected to rise from the
flat relation, β ∼ 0, argued for in §3.2.1, to β ≈ 1/4 − 1/3
as argued in this section. This prediction for the virial radii
runs alongside observations of galactic radii. Ichikawa et al.
(2012), for example, find β ≈ 0.1 for all galaxies in the
7 < log(M!/M!) < 10, and simple regression fits to the
SDSS sample of Bernardi et al. (2013) yield β = 0.21 for
9 < log(M!/M!) < 10, steepening to β = 0.29 for 10 <
log(M!/M!) < 11. This slope then rises rapidly for the most
massive galaxies, as discussed now in §3.2.3.

3.2.3 The most massive galaxies

At the highest end of the stellar mass range, the M! −Mv

relation quoted above continues to flatten as the correlation
between the host mass (or circular velocity) and the stellar
mass of the central galaxy begins to no longer hold, and is
eventually lost. Structures exist locally which are deduced to
contain 1015M! and higher (e.g. Dai et al. 2012), but though

9 More formally, this should read f−1
! M!+Mout = (Ωb/ΩM)Mv,

where f! ≡ M!/Mgal. For simplicity, here, we follow the argument
through with f! ∼ 1.
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ABSTRACT

We use a statistical approach to determine the relationship between the stellar masses of galaxies and the masses
of the dark matter halos in which they reside. We obtain a parameterized stellar-to-halo mass (SHM) relation by
populating halos and subhalos in an N-body simulation with galaxies and requiring that the observed stellar mass
function be reproduced. We find good agreement with constraints from galaxy–galaxy lensing and predictions of
semi-analytic models. Using this mapping, and the positions of the halos and subhalos obtained from the simulation,
we find that our model predictions for the galaxy two-point correlation function (CF) as a function of stellar mass
are in excellent agreement with the observed clustering properties in the Sloan Digital Sky Survey at z = 0. We
show that the clustering data do not provide additional strong constraints on the SHM function and conclude that
our model can therefore predict clustering as a function of stellar mass. We compute the conditional mass function,
which yields the average number of galaxies with stellar masses in the range m ± dm/2 that reside in a halo of
mass M. We study the redshift dependence of the SHM relation and show that, for low-mass halos, the SHM ratio is
lower at higher redshift. The derived SHM relation is used to predict the stellar mass dependent galaxy CF and bias
at high redshift. Our model predicts that not only are massive galaxies more biased than low-mass galaxies at all
redshifts, but also the bias increases more rapidly with increasing redshift for massive galaxies than for low-mass
ones. We present convenient fitting functions for the SHM relation as a function of redshift, the conditional mass
function, and the bias as a function of stellar mass and redshift.

Key words: cosmology: theory – dark matter – galaxies: clusters: general – galaxies: evolution – galaxies: halos –
galaxies: high-redshift – galaxies: statistics – galaxies: stellar content – large-scale structure of universe

1. INTRODUCTION

In the standard cold dark matter (CDM) paradigm, the
formation of galaxies is driven by the growth of the large-scale
structure of the universe and the formation of dark matter halos.
Galaxies form by the cooling and condensation of gas in the
centers of the potential wells of extended virialized dark matter
halos (White & Rees 1978; Fall & Efstathiou 1980; Blumenthal
et al. 1984). In this picture, galaxy properties, such as luminosity
or stellar mass, are expected to be tightly coupled to the depth
of the halo potential and thus to the halo mass.

There are various different approaches to link the properties of
galaxies to those of their halos. A first method attempts to derive
the halo properties from the properties of its galaxy population
using, e.g., galaxy kinematics (Erickson et al. 1987; Zaritsky
et al. 1993; Carlberg et al. 1996; More et al. 2009a, 2009b),
gravitational lensing (Mandelbaum et al. 2005, 2006; Cacciato
et al. 2009), or X-ray studies (Lin et al. 2003; Lin & Mohr 2004).

A second approach is to attempt to model the physics that
shapes galaxy formation ab initio using either large numerical
simulations including both gas and dark matter (Katz et al. 1996;
Springel & Hernquist 2003) or semi-analytic models (SAMs) of
galaxy formation (e.g., Kauffmann et al. 1993; Cole et al. 1994;
Somerville & Primack 1999). In “hybrid” SAMs (e.g., Croton
et al. 2006; Bower et al. 2006), dark matter “merger trees” are
extracted from a dark matter only N-body simulation, and gas
processes are treated with semi-analytic recipes. An advantage
of this method is that high-resolution N-body simulations can
track the evolution of individual subhalos (Klypin et al. 1999;
Springel et al. 2001) and thus provide the precise positions
and velocities of galaxies within a halo. However, many of

the physical processes involved in galaxy formation (such as
star formation and various kinds of feedback) are still not
well understood, and in many cases simulations are not able
to reproduce observed quantities with high accuracy.

With the accumulation of data from large galaxy surveys
over the last decade, a third method has been developed,
which links galaxies to halos using a statistical approach. The
Halo Occupation Distribution (HOD) formalism specifies the
probability distribution for a halo of mass M to harbor N
galaxies with certain intrinsic properties, such as luminosity,
color, or type (e.g., Peacock & Smith 2000; Seljak 2000; White
2001; Berlind & Weinberg 2002). More complex formulations
of this kind of modeling, such as the conditional luminosity
function (CLF) formalism (Yang et al. 2003, 2004; van den
Bosch et al. 2003) have extended the HOD approach. These
methods have the advantage that they do not rely on assumptions
about the (poorly understood) physical processes that drive
galaxy formation. In this way, it is possible to constrain the
relationship between galaxy and halo properties (and thus,
indirectly, the underlying physics), and to construct mock
catalogs that reproduce in detail a desired observational quantity
(such as the luminosity function). One disadvantage of the
classical HOD approach was that one had to make assumptions
about the distribution of positions and velocities of galaxies
within their host halos. In addition, the results of the HOD
modeling can be difficult to interpret in terms of the underlying
physics of galaxy formation.

In recent years, HOD models have been introduced that make
use of information about the positions, velocities, and masses
of halos and subhalos extracted from a dissipationless N-body
simulation. The (sub)halo mass is then empirically linked to
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structure of the universe and the formation of dark matter halos.
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centers of the potential wells of extended virialized dark matter
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et al. 1984). In this picture, galaxy properties, such as luminosity
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of the halo potential and thus to the halo mass.

There are various different approaches to link the properties of
galaxies to those of their halos. A first method attempts to derive
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well understood, and in many cases simulations are not able
to reproduce observed quantities with high accuracy.

With the accumulation of data from large galaxy surveys
over the last decade, a third method has been developed,
which links galaxies to halos using a statistical approach. The
Halo Occupation Distribution (HOD) formalism specifies the
probability distribution for a halo of mass M to harbor N
galaxies with certain intrinsic properties, such as luminosity,
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2001; Berlind & Weinberg 2002). More complex formulations
of this kind of modeling, such as the conditional luminosity
function (CLF) formalism (Yang et al. 2003, 2004; van den
Bosch et al. 2003) have extended the HOD approach. These
methods have the advantage that they do not rely on assumptions
about the (poorly understood) physical processes that drive
galaxy formation. In this way, it is possible to constrain the
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indirectly, the underlying physics), and to construct mock
catalogs that reproduce in detail a desired observational quantity
(such as the luminosity function). One disadvantage of the
classical HOD approach was that one had to make assumptions
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Figure 1. Comparison between the halo mass function offset by a factor of 0.05
(dashed line), the observed galaxy mass function (symbols), our model without
scatter (solid line), and our model including scatter (dotted line).We see that
the halo and the galaxy mass functions are different shapes, implying that the
stellar-to-halo mass ratio m/M is not constant. Our four-parameter model for
the halo mass dependent stellar-to-halo mass ratio is in very good agreement
with the observations (both including and neglecting scatter).

3.2. Constraining the Free Parameters

Having set up the model, we now need to constrain the four
free parameters M1, (m/M)0, β, and γ . To do this, we populate
the halos in the simulation with galaxies. The stellar masses of
the galaxies depend on the mass of the halo and are derived
according to our prescription (Equation (2)). The positions
of the galaxies are given by the halo positions in the N-body
simulation.

Once the simulation box is filled with galaxies, it is straight-
forward to compute the SMF Φmod(m). As we want to fit this
model mass function to the observed mass function Φobs(m)
by Panter et al. (2007), we choose the same stellar mass range
(108.5 M!–1011.85 M!) and the same bin size. The observed
SMF was derived using spectra from the Sloan Digital Sky
Survey Data Release 3 (SDSS DR3); see Panter et al. (2004) for
a description of the method.

Furthermore, it is possible to determine the stellar mass
dependent clustering of galaxies. For this, we compute projected
galaxy CFs wp,mod(rp,mi) in several stellar mass bins which we
choose to be the same as in the observed projected galaxy CFs of
Li et al. (2006). These were derived using a sample of galaxies
from the SDSS DR2 with stellar masses estimated from spectra
by Kauffmann et al. (2003).

We first calculate the real space CF ξ (r). In a simulation, this
can be done by simply counting pairs in distance bins:

ξ (ri) = dd(ri)
Np(ri)

− 1, (3)

where dd(ri) is the number of pairs counted in a distance bin
and Np(ri) = 2πN2r2

i ∆ri/L
3
box, where N is the total number of

galaxies in the box. The projected CF wp(rp) can be derived
by integrating the real space correlation function ξ (r) along the

line of sight:

wp(rp) = 2
∫ ∞

0
dr||ξ

(√
r2
|| + r2

p

)
= 2

∫ ∞

rp

dr
rξ (r)

√
r2 − r2

p

,

(4)
where the comoving distance (r) has been decomposed into
components parallel (r||) and perpendicular (rp) to the line
of sight. The integration is truncated at 45 Mpc. Due to the
finite size of the simulation box (Lbox = 100 Mpc), the
model correlation function is not reliable beyond scales of
r ∼ 0.1Lbox ∼ 10 Mpc.

In order to fit the model to the observations, we use Powell’s
directions set method in multidimensions (e.g., Press et al. 1992)
to find the values of M1, (m/M)0, β, and γ that minimize either

χ2
r = χ2

r (Φ) = χ2(Φ)
NΦ

(mass function fit) or

χ2
r = χ2

r (Φ) + χ2
r (wp) = χ2(Φ)

NΦ
+

χ2(wp)
Nr Nm

(mass function and projected CF fit) with NΦ and Nr the number
of data points for the SMF and projected CFs, respectively, and
Nm the number of mass bins for the projected CFs.

In this context, χ2(Φ) and χ2(wp) are defined as follows:

χ2(Φ) =
NΦ∑

i=1

[
Φmod(mi) − Φobs(mi)

σΦobs(mi )

]2

,

χ2(wp) =
Nm∑

i=1

Nr∑

j=1

[
wp,mod(rp,j , mi) − wp,obs(rp,j , mi)

σwp,obs(rp,j ,mi )

]2

,

with σΦobs and σwp,obs the errors for the SMF and projected CFs,
respectively. Note that for the simultaneous fit, by adding the
reduced χ2

r , we give the same weight to both data sets.

3.3. Estimation of Parameter Errors

In order to obtain estimates of the errors on the parameters,
we need their probability distribution prob(A|I ), where A is the
parameter under consideration and I is the given background
information. The most likely value of A is then given by:
Abest = max(prob(A|I )).

As we have to assume that all our parameters are coupled, we
can only compute the probability for a given set of parameters.
This probability is given by:

prob(M1, (m/M)0,β, γ |I ) ∝ exp(−χ2).

In a system with four free parameters A,B,C, and D one can
calculate the probability distribution of one parameter (e.g., A)
if the probability distribution for the set of parameters is known,
using marginalization:

prob(A|I ) =
∫ ∞

−∞
prob(A,B|I )dB

=
∫ ∞

−∞
prob(A,B,C,D|I )dBdCdD.

Once the probability distribution for a parameter is deter-
mined, one can assign errors based on the confidence intervals.
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parameter under consideration and I is the given background
information. The most likely value of A is then given by:
Abest = max(prob(A|I )).

As we have to assume that all our parameters are coupled, we
can only compute the probability for a given set of parameters.
This probability is given by:

prob(M1, (m/M)0,β, γ |I ) ∝ exp(−χ2).
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ABSTRACT

We use a statistical approach to determine the relationship between the stellar masses of galaxies and the masses
of the dark matter halos in which they reside. We obtain a parameterized stellar-to-halo mass (SHM) relation by
populating halos and subhalos in an N-body simulation with galaxies and requiring that the observed stellar mass
function be reproduced. We find good agreement with constraints from galaxy–galaxy lensing and predictions of
semi-analytic models. Using this mapping, and the positions of the halos and subhalos obtained from the simulation,
we find that our model predictions for the galaxy two-point correlation function (CF) as a function of stellar mass
are in excellent agreement with the observed clustering properties in the Sloan Digital Sky Survey at z = 0. We
show that the clustering data do not provide additional strong constraints on the SHM function and conclude that
our model can therefore predict clustering as a function of stellar mass. We compute the conditional mass function,
which yields the average number of galaxies with stellar masses in the range m ± dm/2 that reside in a halo of
mass M. We study the redshift dependence of the SHM relation and show that, for low-mass halos, the SHM ratio is
lower at higher redshift. The derived SHM relation is used to predict the stellar mass dependent galaxy CF and bias
at high redshift. Our model predicts that not only are massive galaxies more biased than low-mass galaxies at all
redshifts, but also the bias increases more rapidly with increasing redshift for massive galaxies than for low-mass
ones. We present convenient fitting functions for the SHM relation as a function of redshift, the conditional mass
function, and the bias as a function of stellar mass and redshift.

Key words: cosmology: theory – dark matter – galaxies: clusters: general – galaxies: evolution – galaxies: halos –
galaxies: high-redshift – galaxies: statistics – galaxies: stellar content – large-scale structure of universe

1. INTRODUCTION

In the standard cold dark matter (CDM) paradigm, the
formation of galaxies is driven by the growth of the large-scale
structure of the universe and the formation of dark matter halos.
Galaxies form by the cooling and condensation of gas in the
centers of the potential wells of extended virialized dark matter
halos (White & Rees 1978; Fall & Efstathiou 1980; Blumenthal
et al. 1984). In this picture, galaxy properties, such as luminosity
or stellar mass, are expected to be tightly coupled to the depth
of the halo potential and thus to the halo mass.

There are various different approaches to link the properties of
galaxies to those of their halos. A first method attempts to derive
the halo properties from the properties of its galaxy population
using, e.g., galaxy kinematics (Erickson et al. 1987; Zaritsky
et al. 1993; Carlberg et al. 1996; More et al. 2009a, 2009b),
gravitational lensing (Mandelbaum et al. 2005, 2006; Cacciato
et al. 2009), or X-ray studies (Lin et al. 2003; Lin & Mohr 2004).

A second approach is to attempt to model the physics that
shapes galaxy formation ab initio using either large numerical
simulations including both gas and dark matter (Katz et al. 1996;
Springel & Hernquist 2003) or semi-analytic models (SAMs) of
galaxy formation (e.g., Kauffmann et al. 1993; Cole et al. 1994;
Somerville & Primack 1999). In “hybrid” SAMs (e.g., Croton
et al. 2006; Bower et al. 2006), dark matter “merger trees” are
extracted from a dark matter only N-body simulation, and gas
processes are treated with semi-analytic recipes. An advantage
of this method is that high-resolution N-body simulations can
track the evolution of individual subhalos (Klypin et al. 1999;
Springel et al. 2001) and thus provide the precise positions
and velocities of galaxies within a halo. However, many of

the physical processes involved in galaxy formation (such as
star formation and various kinds of feedback) are still not
well understood, and in many cases simulations are not able
to reproduce observed quantities with high accuracy.

With the accumulation of data from large galaxy surveys
over the last decade, a third method has been developed,
which links galaxies to halos using a statistical approach. The
Halo Occupation Distribution (HOD) formalism specifies the
probability distribution for a halo of mass M to harbor N
galaxies with certain intrinsic properties, such as luminosity,
color, or type (e.g., Peacock & Smith 2000; Seljak 2000; White
2001; Berlind & Weinberg 2002). More complex formulations
of this kind of modeling, such as the conditional luminosity
function (CLF) formalism (Yang et al. 2003, 2004; van den
Bosch et al. 2003) have extended the HOD approach. These
methods have the advantage that they do not rely on assumptions
about the (poorly understood) physical processes that drive
galaxy formation. In this way, it is possible to constrain the
relationship between galaxy and halo properties (and thus,
indirectly, the underlying physics), and to construct mock
catalogs that reproduce in detail a desired observational quantity
(such as the luminosity function). One disadvantage of the
classical HOD approach was that one had to make assumptions
about the distribution of positions and velocities of galaxies
within their host halos. In addition, the results of the HOD
modeling can be difficult to interpret in terms of the underlying
physics of galaxy formation.

In recent years, HOD models have been introduced that make
use of information about the positions, velocities, and masses
of halos and subhalos extracted from a dissipationless N-body
simulation. The (sub)halo mass is then empirically linked to
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Figure 1. Comparison between the halo mass function offset by a factor of 0.05
(dashed line), the observed galaxy mass function (symbols), our model without
scatter (solid line), and our model including scatter (dotted line).We see that
the halo and the galaxy mass functions are different shapes, implying that the
stellar-to-halo mass ratio m/M is not constant. Our four-parameter model for
the halo mass dependent stellar-to-halo mass ratio is in very good agreement
with the observations (both including and neglecting scatter).

3.2. Constraining the Free Parameters

Having set up the model, we now need to constrain the four
free parameters M1, (m/M)0, β, and γ . To do this, we populate
the halos in the simulation with galaxies. The stellar masses of
the galaxies depend on the mass of the halo and are derived
according to our prescription (Equation (2)). The positions
of the galaxies are given by the halo positions in the N-body
simulation.

Once the simulation box is filled with galaxies, it is straight-
forward to compute the SMF Φmod(m). As we want to fit this
model mass function to the observed mass function Φobs(m)
by Panter et al. (2007), we choose the same stellar mass range
(108.5 M!–1011.85 M!) and the same bin size. The observed
SMF was derived using spectra from the Sloan Digital Sky
Survey Data Release 3 (SDSS DR3); see Panter et al. (2004) for
a description of the method.

Furthermore, it is possible to determine the stellar mass
dependent clustering of galaxies. For this, we compute projected
galaxy CFs wp,mod(rp,mi) in several stellar mass bins which we
choose to be the same as in the observed projected galaxy CFs of
Li et al. (2006). These were derived using a sample of galaxies
from the SDSS DR2 with stellar masses estimated from spectra
by Kauffmann et al. (2003).

We first calculate the real space CF ξ (r). In a simulation, this
can be done by simply counting pairs in distance bins:

ξ (ri) = dd(ri)
Np(ri)

− 1, (3)

where dd(ri) is the number of pairs counted in a distance bin
and Np(ri) = 2πN2r2

i ∆ri/L
3
box, where N is the total number of

galaxies in the box. The projected CF wp(rp) can be derived
by integrating the real space correlation function ξ (r) along the

line of sight:

wp(rp) = 2
∫ ∞

0
dr||ξ

(√
r2
|| + r2

p

)
= 2

∫ ∞

rp

dr
rξ (r)

√
r2 − r2

p

,

(4)
where the comoving distance (r) has been decomposed into
components parallel (r||) and perpendicular (rp) to the line
of sight. The integration is truncated at 45 Mpc. Due to the
finite size of the simulation box (Lbox = 100 Mpc), the
model correlation function is not reliable beyond scales of
r ∼ 0.1Lbox ∼ 10 Mpc.

In order to fit the model to the observations, we use Powell’s
directions set method in multidimensions (e.g., Press et al. 1992)
to find the values of M1, (m/M)0, β, and γ that minimize either

χ2
r = χ2

r (Φ) = χ2(Φ)
NΦ

(mass function fit) or

χ2
r = χ2

r (Φ) + χ2
r (wp) = χ2(Φ)

NΦ
+

χ2(wp)
Nr Nm

(mass function and projected CF fit) with NΦ and Nr the number
of data points for the SMF and projected CFs, respectively, and
Nm the number of mass bins for the projected CFs.

In this context, χ2(Φ) and χ2(wp) are defined as follows:

χ2(Φ) =
NΦ∑

i=1

[
Φmod(mi) − Φobs(mi)

σΦobs(mi )

]2

,

χ2(wp) =
Nm∑

i=1

Nr∑

j=1

[
wp,mod(rp,j , mi) − wp,obs(rp,j , mi)

σwp,obs(rp,j ,mi )

]2

,

with σΦobs and σwp,obs the errors for the SMF and projected CFs,
respectively. Note that for the simultaneous fit, by adding the
reduced χ2

r , we give the same weight to both data sets.

3.3. Estimation of Parameter Errors

In order to obtain estimates of the errors on the parameters,
we need their probability distribution prob(A|I ), where A is the
parameter under consideration and I is the given background
information. The most likely value of A is then given by:
Abest = max(prob(A|I )).

As we have to assume that all our parameters are coupled, we
can only compute the probability for a given set of parameters.
This probability is given by:

prob(M1, (m/M)0,β, γ |I ) ∝ exp(−χ2).

In a system with four free parameters A,B,C, and D one can
calculate the probability distribution of one parameter (e.g., A)
if the probability distribution for the set of parameters is known,
using marginalization:

prob(A|I ) =
∫ ∞

−∞
prob(A,B|I )dB

=
∫ ∞

−∞
prob(A,B,C,D|I )dBdCdD.

Once the probability distribution for a parameter is deter-
mined, one can assign errors based on the confidence intervals.
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ABSTRACT

We use a statistical approach to determine the relationship between the stellar masses of galaxies and the masses
of the dark matter halos in which they reside. We obtain a parameterized stellar-to-halo mass (SHM) relation by
populating halos and subhalos in an N-body simulation with galaxies and requiring that the observed stellar mass
function be reproduced. We find good agreement with constraints from galaxy–galaxy lensing and predictions of
semi-analytic models. Using this mapping, and the positions of the halos and subhalos obtained from the simulation,
we find that our model predictions for the galaxy two-point correlation function (CF) as a function of stellar mass
are in excellent agreement with the observed clustering properties in the Sloan Digital Sky Survey at z = 0. We
show that the clustering data do not provide additional strong constraints on the SHM function and conclude that
our model can therefore predict clustering as a function of stellar mass. We compute the conditional mass function,
which yields the average number of galaxies with stellar masses in the range m ± dm/2 that reside in a halo of
mass M. We study the redshift dependence of the SHM relation and show that, for low-mass halos, the SHM ratio is
lower at higher redshift. The derived SHM relation is used to predict the stellar mass dependent galaxy CF and bias
at high redshift. Our model predicts that not only are massive galaxies more biased than low-mass galaxies at all
redshifts, but also the bias increases more rapidly with increasing redshift for massive galaxies than for low-mass
ones. We present convenient fitting functions for the SHM relation as a function of redshift, the conditional mass
function, and the bias as a function of stellar mass and redshift.

Key words: cosmology: theory – dark matter – galaxies: clusters: general – galaxies: evolution – galaxies: halos –
galaxies: high-redshift – galaxies: statistics – galaxies: stellar content – large-scale structure of universe

1. INTRODUCTION

In the standard cold dark matter (CDM) paradigm, the
formation of galaxies is driven by the growth of the large-scale
structure of the universe and the formation of dark matter halos.
Galaxies form by the cooling and condensation of gas in the
centers of the potential wells of extended virialized dark matter
halos (White & Rees 1978; Fall & Efstathiou 1980; Blumenthal
et al. 1984). In this picture, galaxy properties, such as luminosity
or stellar mass, are expected to be tightly coupled to the depth
of the halo potential and thus to the halo mass.

There are various different approaches to link the properties of
galaxies to those of their halos. A first method attempts to derive
the halo properties from the properties of its galaxy population
using, e.g., galaxy kinematics (Erickson et al. 1987; Zaritsky
et al. 1993; Carlberg et al. 1996; More et al. 2009a, 2009b),
gravitational lensing (Mandelbaum et al. 2005, 2006; Cacciato
et al. 2009), or X-ray studies (Lin et al. 2003; Lin & Mohr 2004).

A second approach is to attempt to model the physics that
shapes galaxy formation ab initio using either large numerical
simulations including both gas and dark matter (Katz et al. 1996;
Springel & Hernquist 2003) or semi-analytic models (SAMs) of
galaxy formation (e.g., Kauffmann et al. 1993; Cole et al. 1994;
Somerville & Primack 1999). In “hybrid” SAMs (e.g., Croton
et al. 2006; Bower et al. 2006), dark matter “merger trees” are
extracted from a dark matter only N-body simulation, and gas
processes are treated with semi-analytic recipes. An advantage
of this method is that high-resolution N-body simulations can
track the evolution of individual subhalos (Klypin et al. 1999;
Springel et al. 2001) and thus provide the precise positions
and velocities of galaxies within a halo. However, many of

the physical processes involved in galaxy formation (such as
star formation and various kinds of feedback) are still not
well understood, and in many cases simulations are not able
to reproduce observed quantities with high accuracy.

With the accumulation of data from large galaxy surveys
over the last decade, a third method has been developed,
which links galaxies to halos using a statistical approach. The
Halo Occupation Distribution (HOD) formalism specifies the
probability distribution for a halo of mass M to harbor N
galaxies with certain intrinsic properties, such as luminosity,
color, or type (e.g., Peacock & Smith 2000; Seljak 2000; White
2001; Berlind & Weinberg 2002). More complex formulations
of this kind of modeling, such as the conditional luminosity
function (CLF) formalism (Yang et al. 2003, 2004; van den
Bosch et al. 2003) have extended the HOD approach. These
methods have the advantage that they do not rely on assumptions
about the (poorly understood) physical processes that drive
galaxy formation. In this way, it is possible to constrain the
relationship between galaxy and halo properties (and thus,
indirectly, the underlying physics), and to construct mock
catalogs that reproduce in detail a desired observational quantity
(such as the luminosity function). One disadvantage of the
classical HOD approach was that one had to make assumptions
about the distribution of positions and velocities of galaxies
within their host halos. In addition, the results of the HOD
modeling can be difficult to interpret in terms of the underlying
physics of galaxy formation.

In recent years, HOD models have been introduced that make
use of information about the positions, velocities, and masses
of halos and subhalos extracted from a dissipationless N-body
simulation. The (sub)halo mass is then empirically linked to
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Figure 1. Comparison between the halo mass function offset by a factor of 0.05
(dashed line), the observed galaxy mass function (symbols), our model without
scatter (solid line), and our model including scatter (dotted line).We see that
the halo and the galaxy mass functions are different shapes, implying that the
stellar-to-halo mass ratio m/M is not constant. Our four-parameter model for
the halo mass dependent stellar-to-halo mass ratio is in very good agreement
with the observations (both including and neglecting scatter).

3.2. Constraining the Free Parameters

Having set up the model, we now need to constrain the four
free parameters M1, (m/M)0, β, and γ . To do this, we populate
the halos in the simulation with galaxies. The stellar masses of
the galaxies depend on the mass of the halo and are derived
according to our prescription (Equation (2)). The positions
of the galaxies are given by the halo positions in the N-body
simulation.

Once the simulation box is filled with galaxies, it is straight-
forward to compute the SMF Φmod(m). As we want to fit this
model mass function to the observed mass function Φobs(m)
by Panter et al. (2007), we choose the same stellar mass range
(108.5 M!–1011.85 M!) and the same bin size. The observed
SMF was derived using spectra from the Sloan Digital Sky
Survey Data Release 3 (SDSS DR3); see Panter et al. (2004) for
a description of the method.

Furthermore, it is possible to determine the stellar mass
dependent clustering of galaxies. For this, we compute projected
galaxy CFs wp,mod(rp,mi) in several stellar mass bins which we
choose to be the same as in the observed projected galaxy CFs of
Li et al. (2006). These were derived using a sample of galaxies
from the SDSS DR2 with stellar masses estimated from spectra
by Kauffmann et al. (2003).

We first calculate the real space CF ξ (r). In a simulation, this
can be done by simply counting pairs in distance bins:

ξ (ri) = dd(ri)
Np(ri)

− 1, (3)

where dd(ri) is the number of pairs counted in a distance bin
and Np(ri) = 2πN2r2

i ∆ri/L
3
box, where N is the total number of

galaxies in the box. The projected CF wp(rp) can be derived
by integrating the real space correlation function ξ (r) along the

line of sight:

wp(rp) = 2
∫ ∞

0
dr||ξ

(√
r2
|| + r2

p

)
= 2

∫ ∞

rp

dr
rξ (r)

√
r2 − r2

p

,

(4)
where the comoving distance (r) has been decomposed into
components parallel (r||) and perpendicular (rp) to the line
of sight. The integration is truncated at 45 Mpc. Due to the
finite size of the simulation box (Lbox = 100 Mpc), the
model correlation function is not reliable beyond scales of
r ∼ 0.1Lbox ∼ 10 Mpc.

In order to fit the model to the observations, we use Powell’s
directions set method in multidimensions (e.g., Press et al. 1992)
to find the values of M1, (m/M)0, β, and γ that minimize either

χ2
r = χ2

r (Φ) = χ2(Φ)
NΦ

(mass function fit) or

χ2
r = χ2

r (Φ) + χ2
r (wp) = χ2(Φ)

NΦ
+

χ2(wp)
Nr Nm

(mass function and projected CF fit) with NΦ and Nr the number
of data points for the SMF and projected CFs, respectively, and
Nm the number of mass bins for the projected CFs.

In this context, χ2(Φ) and χ2(wp) are defined as follows:

χ2(Φ) =
NΦ∑

i=1

[
Φmod(mi) − Φobs(mi)

σΦobs(mi )

]2

,

χ2(wp) =
Nm∑

i=1

Nr∑

j=1

[
wp,mod(rp,j , mi) − wp,obs(rp,j , mi)

σwp,obs(rp,j ,mi )

]2

,

with σΦobs and σwp,obs the errors for the SMF and projected CFs,
respectively. Note that for the simultaneous fit, by adding the
reduced χ2

r , we give the same weight to both data sets.

3.3. Estimation of Parameter Errors

In order to obtain estimates of the errors on the parameters,
we need their probability distribution prob(A|I ), where A is the
parameter under consideration and I is the given background
information. The most likely value of A is then given by:
Abest = max(prob(A|I )).

As we have to assume that all our parameters are coupled, we
can only compute the probability for a given set of parameters.
This probability is given by:

prob(M1, (m/M)0,β, γ |I ) ∝ exp(−χ2).

In a system with four free parameters A,B,C, and D one can
calculate the probability distribution of one parameter (e.g., A)
if the probability distribution for the set of parameters is known,
using marginalization:

prob(A|I ) =
∫ ∞

−∞
prob(A,B|I )dB

=
∫ ∞

−∞
prob(A,B,C,D|I )dBdCdD.

Once the probability distribution for a parameter is deter-
mined, one can assign errors based on the confidence intervals.

Increasing 
Halo Mass
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ABSTRACT

We use a statistical approach to determine the relationship between the stellar masses of galaxies and the masses
of the dark matter halos in which they reside. We obtain a parameterized stellar-to-halo mass (SHM) relation by
populating halos and subhalos in an N-body simulation with galaxies and requiring that the observed stellar mass
function be reproduced. We find good agreement with constraints from galaxy–galaxy lensing and predictions of
semi-analytic models. Using this mapping, and the positions of the halos and subhalos obtained from the simulation,
we find that our model predictions for the galaxy two-point correlation function (CF) as a function of stellar mass
are in excellent agreement with the observed clustering properties in the Sloan Digital Sky Survey at z = 0. We
show that the clustering data do not provide additional strong constraints on the SHM function and conclude that
our model can therefore predict clustering as a function of stellar mass. We compute the conditional mass function,
which yields the average number of galaxies with stellar masses in the range m ± dm/2 that reside in a halo of
mass M. We study the redshift dependence of the SHM relation and show that, for low-mass halos, the SHM ratio is
lower at higher redshift. The derived SHM relation is used to predict the stellar mass dependent galaxy CF and bias
at high redshift. Our model predicts that not only are massive galaxies more biased than low-mass galaxies at all
redshifts, but also the bias increases more rapidly with increasing redshift for massive galaxies than for low-mass
ones. We present convenient fitting functions for the SHM relation as a function of redshift, the conditional mass
function, and the bias as a function of stellar mass and redshift.

Key words: cosmology: theory – dark matter – galaxies: clusters: general – galaxies: evolution – galaxies: halos –
galaxies: high-redshift – galaxies: statistics – galaxies: stellar content – large-scale structure of universe

1. INTRODUCTION

In the standard cold dark matter (CDM) paradigm, the
formation of galaxies is driven by the growth of the large-scale
structure of the universe and the formation of dark matter halos.
Galaxies form by the cooling and condensation of gas in the
centers of the potential wells of extended virialized dark matter
halos (White & Rees 1978; Fall & Efstathiou 1980; Blumenthal
et al. 1984). In this picture, galaxy properties, such as luminosity
or stellar mass, are expected to be tightly coupled to the depth
of the halo potential and thus to the halo mass.

There are various different approaches to link the properties of
galaxies to those of their halos. A first method attempts to derive
the halo properties from the properties of its galaxy population
using, e.g., galaxy kinematics (Erickson et al. 1987; Zaritsky
et al. 1993; Carlberg et al. 1996; More et al. 2009a, 2009b),
gravitational lensing (Mandelbaum et al. 2005, 2006; Cacciato
et al. 2009), or X-ray studies (Lin et al. 2003; Lin & Mohr 2004).

A second approach is to attempt to model the physics that
shapes galaxy formation ab initio using either large numerical
simulations including both gas and dark matter (Katz et al. 1996;
Springel & Hernquist 2003) or semi-analytic models (SAMs) of
galaxy formation (e.g., Kauffmann et al. 1993; Cole et al. 1994;
Somerville & Primack 1999). In “hybrid” SAMs (e.g., Croton
et al. 2006; Bower et al. 2006), dark matter “merger trees” are
extracted from a dark matter only N-body simulation, and gas
processes are treated with semi-analytic recipes. An advantage
of this method is that high-resolution N-body simulations can
track the evolution of individual subhalos (Klypin et al. 1999;
Springel et al. 2001) and thus provide the precise positions
and velocities of galaxies within a halo. However, many of

the physical processes involved in galaxy formation (such as
star formation and various kinds of feedback) are still not
well understood, and in many cases simulations are not able
to reproduce observed quantities with high accuracy.

With the accumulation of data from large galaxy surveys
over the last decade, a third method has been developed,
which links galaxies to halos using a statistical approach. The
Halo Occupation Distribution (HOD) formalism specifies the
probability distribution for a halo of mass M to harbor N
galaxies with certain intrinsic properties, such as luminosity,
color, or type (e.g., Peacock & Smith 2000; Seljak 2000; White
2001; Berlind & Weinberg 2002). More complex formulations
of this kind of modeling, such as the conditional luminosity
function (CLF) formalism (Yang et al. 2003, 2004; van den
Bosch et al. 2003) have extended the HOD approach. These
methods have the advantage that they do not rely on assumptions
about the (poorly understood) physical processes that drive
galaxy formation. In this way, it is possible to constrain the
relationship between galaxy and halo properties (and thus,
indirectly, the underlying physics), and to construct mock
catalogs that reproduce in detail a desired observational quantity
(such as the luminosity function). One disadvantage of the
classical HOD approach was that one had to make assumptions
about the distribution of positions and velocities of galaxies
within their host halos. In addition, the results of the HOD
modeling can be difficult to interpret in terms of the underlying
physics of galaxy formation.

In recent years, HOD models have been introduced that make
use of information about the positions, velocities, and masses
of halos and subhalos extracted from a dissipationless N-body
simulation. The (sub)halo mass is then empirically linked to
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Figure 1. Comparison between the halo mass function offset by a factor of 0.05
(dashed line), the observed galaxy mass function (symbols), our model without
scatter (solid line), and our model including scatter (dotted line).We see that
the halo and the galaxy mass functions are different shapes, implying that the
stellar-to-halo mass ratio m/M is not constant. Our four-parameter model for
the halo mass dependent stellar-to-halo mass ratio is in very good agreement
with the observations (both including and neglecting scatter).

3.2. Constraining the Free Parameters

Having set up the model, we now need to constrain the four
free parameters M1, (m/M)0, β, and γ . To do this, we populate
the halos in the simulation with galaxies. The stellar masses of
the galaxies depend on the mass of the halo and are derived
according to our prescription (Equation (2)). The positions
of the galaxies are given by the halo positions in the N-body
simulation.

Once the simulation box is filled with galaxies, it is straight-
forward to compute the SMF Φmod(m). As we want to fit this
model mass function to the observed mass function Φobs(m)
by Panter et al. (2007), we choose the same stellar mass range
(108.5 M!–1011.85 M!) and the same bin size. The observed
SMF was derived using spectra from the Sloan Digital Sky
Survey Data Release 3 (SDSS DR3); see Panter et al. (2004) for
a description of the method.

Furthermore, it is possible to determine the stellar mass
dependent clustering of galaxies. For this, we compute projected
galaxy CFs wp,mod(rp,mi) in several stellar mass bins which we
choose to be the same as in the observed projected galaxy CFs of
Li et al. (2006). These were derived using a sample of galaxies
from the SDSS DR2 with stellar masses estimated from spectra
by Kauffmann et al. (2003).

We first calculate the real space CF ξ (r). In a simulation, this
can be done by simply counting pairs in distance bins:

ξ (ri) = dd(ri)
Np(ri)

− 1, (3)

where dd(ri) is the number of pairs counted in a distance bin
and Np(ri) = 2πN2r2

i ∆ri/L
3
box, where N is the total number of

galaxies in the box. The projected CF wp(rp) can be derived
by integrating the real space correlation function ξ (r) along the

line of sight:

wp(rp) = 2
∫ ∞

0
dr||ξ

(√
r2
|| + r2

p

)
= 2

∫ ∞

rp

dr
rξ (r)

√
r2 − r2

p

,

(4)
where the comoving distance (r) has been decomposed into
components parallel (r||) and perpendicular (rp) to the line
of sight. The integration is truncated at 45 Mpc. Due to the
finite size of the simulation box (Lbox = 100 Mpc), the
model correlation function is not reliable beyond scales of
r ∼ 0.1Lbox ∼ 10 Mpc.

In order to fit the model to the observations, we use Powell’s
directions set method in multidimensions (e.g., Press et al. 1992)
to find the values of M1, (m/M)0, β, and γ that minimize either

χ2
r = χ2

r (Φ) = χ2(Φ)
NΦ

(mass function fit) or

χ2
r = χ2

r (Φ) + χ2
r (wp) = χ2(Φ)

NΦ
+

χ2(wp)
Nr Nm

(mass function and projected CF fit) with NΦ and Nr the number
of data points for the SMF and projected CFs, respectively, and
Nm the number of mass bins for the projected CFs.

In this context, χ2(Φ) and χ2(wp) are defined as follows:

χ2(Φ) =
NΦ∑

i=1

[
Φmod(mi) − Φobs(mi)

σΦobs(mi )

]2

,

χ2(wp) =
Nm∑

i=1

Nr∑

j=1

[
wp,mod(rp,j , mi) − wp,obs(rp,j , mi)

σwp,obs(rp,j ,mi )

]2

,

with σΦobs and σwp,obs the errors for the SMF and projected CFs,
respectively. Note that for the simultaneous fit, by adding the
reduced χ2

r , we give the same weight to both data sets.

3.3. Estimation of Parameter Errors

In order to obtain estimates of the errors on the parameters,
we need their probability distribution prob(A|I ), where A is the
parameter under consideration and I is the given background
information. The most likely value of A is then given by:
Abest = max(prob(A|I )).

As we have to assume that all our parameters are coupled, we
can only compute the probability for a given set of parameters.
This probability is given by:

prob(M1, (m/M)0,β, γ |I ) ∝ exp(−χ2).

In a system with four free parameters A,B,C, and D one can
calculate the probability distribution of one parameter (e.g., A)
if the probability distribution for the set of parameters is known,
using marginalization:

prob(A|I ) =
∫ ∞

−∞
prob(A,B|I )dB

=
∫ ∞

−∞
prob(A,B,C,D|I )dBdCdD.

Once the probability distribution for a parameter is deter-
mined, one can assign errors based on the confidence intervals.
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ABSTRACT

We use a statistical approach to determine the relationship between the stellar masses of galaxies and the masses
of the dark matter halos in which they reside. We obtain a parameterized stellar-to-halo mass (SHM) relation by
populating halos and subhalos in an N-body simulation with galaxies and requiring that the observed stellar mass
function be reproduced. We find good agreement with constraints from galaxy–galaxy lensing and predictions of
semi-analytic models. Using this mapping, and the positions of the halos and subhalos obtained from the simulation,
we find that our model predictions for the galaxy two-point correlation function (CF) as a function of stellar mass
are in excellent agreement with the observed clustering properties in the Sloan Digital Sky Survey at z = 0. We
show that the clustering data do not provide additional strong constraints on the SHM function and conclude that
our model can therefore predict clustering as a function of stellar mass. We compute the conditional mass function,
which yields the average number of galaxies with stellar masses in the range m ± dm/2 that reside in a halo of
mass M. We study the redshift dependence of the SHM relation and show that, for low-mass halos, the SHM ratio is
lower at higher redshift. The derived SHM relation is used to predict the stellar mass dependent galaxy CF and bias
at high redshift. Our model predicts that not only are massive galaxies more biased than low-mass galaxies at all
redshifts, but also the bias increases more rapidly with increasing redshift for massive galaxies than for low-mass
ones. We present convenient fitting functions for the SHM relation as a function of redshift, the conditional mass
function, and the bias as a function of stellar mass and redshift.

Key words: cosmology: theory – dark matter – galaxies: clusters: general – galaxies: evolution – galaxies: halos –
galaxies: high-redshift – galaxies: statistics – galaxies: stellar content – large-scale structure of universe

1. INTRODUCTION

In the standard cold dark matter (CDM) paradigm, the
formation of galaxies is driven by the growth of the large-scale
structure of the universe and the formation of dark matter halos.
Galaxies form by the cooling and condensation of gas in the
centers of the potential wells of extended virialized dark matter
halos (White & Rees 1978; Fall & Efstathiou 1980; Blumenthal
et al. 1984). In this picture, galaxy properties, such as luminosity
or stellar mass, are expected to be tightly coupled to the depth
of the halo potential and thus to the halo mass.

There are various different approaches to link the properties of
galaxies to those of their halos. A first method attempts to derive
the halo properties from the properties of its galaxy population
using, e.g., galaxy kinematics (Erickson et al. 1987; Zaritsky
et al. 1993; Carlberg et al. 1996; More et al. 2009a, 2009b),
gravitational lensing (Mandelbaum et al. 2005, 2006; Cacciato
et al. 2009), or X-ray studies (Lin et al. 2003; Lin & Mohr 2004).

A second approach is to attempt to model the physics that
shapes galaxy formation ab initio using either large numerical
simulations including both gas and dark matter (Katz et al. 1996;
Springel & Hernquist 2003) or semi-analytic models (SAMs) of
galaxy formation (e.g., Kauffmann et al. 1993; Cole et al. 1994;
Somerville & Primack 1999). In “hybrid” SAMs (e.g., Croton
et al. 2006; Bower et al. 2006), dark matter “merger trees” are
extracted from a dark matter only N-body simulation, and gas
processes are treated with semi-analytic recipes. An advantage
of this method is that high-resolution N-body simulations can
track the evolution of individual subhalos (Klypin et al. 1999;
Springel et al. 2001) and thus provide the precise positions
and velocities of galaxies within a halo. However, many of

the physical processes involved in galaxy formation (such as
star formation and various kinds of feedback) are still not
well understood, and in many cases simulations are not able
to reproduce observed quantities with high accuracy.

With the accumulation of data from large galaxy surveys
over the last decade, a third method has been developed,
which links galaxies to halos using a statistical approach. The
Halo Occupation Distribution (HOD) formalism specifies the
probability distribution for a halo of mass M to harbor N
galaxies with certain intrinsic properties, such as luminosity,
color, or type (e.g., Peacock & Smith 2000; Seljak 2000; White
2001; Berlind & Weinberg 2002). More complex formulations
of this kind of modeling, such as the conditional luminosity
function (CLF) formalism (Yang et al. 2003, 2004; van den
Bosch et al. 2003) have extended the HOD approach. These
methods have the advantage that they do not rely on assumptions
about the (poorly understood) physical processes that drive
galaxy formation. In this way, it is possible to constrain the
relationship between galaxy and halo properties (and thus,
indirectly, the underlying physics), and to construct mock
catalogs that reproduce in detail a desired observational quantity
(such as the luminosity function). One disadvantage of the
classical HOD approach was that one had to make assumptions
about the distribution of positions and velocities of galaxies
within their host halos. In addition, the results of the HOD
modeling can be difficult to interpret in terms of the underlying
physics of galaxy formation.

In recent years, HOD models have been introduced that make
use of information about the positions, velocities, and masses
of halos and subhalos extracted from a dissipationless N-body
simulation. The (sub)halo mass is then empirically linked to
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Figure 1. Comparison between the halo mass function offset by a factor of 0.05
(dashed line), the observed galaxy mass function (symbols), our model without
scatter (solid line), and our model including scatter (dotted line).We see that
the halo and the galaxy mass functions are different shapes, implying that the
stellar-to-halo mass ratio m/M is not constant. Our four-parameter model for
the halo mass dependent stellar-to-halo mass ratio is in very good agreement
with the observations (both including and neglecting scatter).

3.2. Constraining the Free Parameters

Having set up the model, we now need to constrain the four
free parameters M1, (m/M)0, β, and γ . To do this, we populate
the halos in the simulation with galaxies. The stellar masses of
the galaxies depend on the mass of the halo and are derived
according to our prescription (Equation (2)). The positions
of the galaxies are given by the halo positions in the N-body
simulation.

Once the simulation box is filled with galaxies, it is straight-
forward to compute the SMF Φmod(m). As we want to fit this
model mass function to the observed mass function Φobs(m)
by Panter et al. (2007), we choose the same stellar mass range
(108.5 M!–1011.85 M!) and the same bin size. The observed
SMF was derived using spectra from the Sloan Digital Sky
Survey Data Release 3 (SDSS DR3); see Panter et al. (2004) for
a description of the method.

Furthermore, it is possible to determine the stellar mass
dependent clustering of galaxies. For this, we compute projected
galaxy CFs wp,mod(rp,mi) in several stellar mass bins which we
choose to be the same as in the observed projected galaxy CFs of
Li et al. (2006). These were derived using a sample of galaxies
from the SDSS DR2 with stellar masses estimated from spectra
by Kauffmann et al. (2003).

We first calculate the real space CF ξ (r). In a simulation, this
can be done by simply counting pairs in distance bins:

ξ (ri) = dd(ri)
Np(ri)

− 1, (3)

where dd(ri) is the number of pairs counted in a distance bin
and Np(ri) = 2πN2r2

i ∆ri/L
3
box, where N is the total number of

galaxies in the box. The projected CF wp(rp) can be derived
by integrating the real space correlation function ξ (r) along the

line of sight:

wp(rp) = 2
∫ ∞

0
dr||ξ

(√
r2
|| + r2

p

)
= 2

∫ ∞

rp

dr
rξ (r)

√
r2 − r2

p

,

(4)
where the comoving distance (r) has been decomposed into
components parallel (r||) and perpendicular (rp) to the line
of sight. The integration is truncated at 45 Mpc. Due to the
finite size of the simulation box (Lbox = 100 Mpc), the
model correlation function is not reliable beyond scales of
r ∼ 0.1Lbox ∼ 10 Mpc.

In order to fit the model to the observations, we use Powell’s
directions set method in multidimensions (e.g., Press et al. 1992)
to find the values of M1, (m/M)0, β, and γ that minimize either

χ2
r = χ2

r (Φ) = χ2(Φ)
NΦ

(mass function fit) or

χ2
r = χ2

r (Φ) + χ2
r (wp) = χ2(Φ)

NΦ
+

χ2(wp)
Nr Nm

(mass function and projected CF fit) with NΦ and Nr the number
of data points for the SMF and projected CFs, respectively, and
Nm the number of mass bins for the projected CFs.

In this context, χ2(Φ) and χ2(wp) are defined as follows:

χ2(Φ) =
NΦ∑

i=1

[
Φmod(mi) − Φobs(mi)

σΦobs(mi )

]2

,

χ2(wp) =
Nm∑

i=1

Nr∑

j=1

[
wp,mod(rp,j , mi) − wp,obs(rp,j , mi)

σwp,obs(rp,j ,mi )

]2

,

with σΦobs and σwp,obs the errors for the SMF and projected CFs,
respectively. Note that for the simultaneous fit, by adding the
reduced χ2

r , we give the same weight to both data sets.

3.3. Estimation of Parameter Errors

In order to obtain estimates of the errors on the parameters,
we need their probability distribution prob(A|I ), where A is the
parameter under consideration and I is the given background
information. The most likely value of A is then given by:
Abest = max(prob(A|I )).

As we have to assume that all our parameters are coupled, we
can only compute the probability for a given set of parameters.
This probability is given by:

prob(M1, (m/M)0,β, γ |I ) ∝ exp(−χ2).

In a system with four free parameters A,B,C, and D one can
calculate the probability distribution of one parameter (e.g., A)
if the probability distribution for the set of parameters is known,
using marginalization:

prob(A|I ) =
∫ ∞

−∞
prob(A,B|I )dB

=
∫ ∞

−∞
prob(A,B,C,D|I )dBdCdD.

Once the probability distribution for a parameter is deter-
mined, one can assign errors based on the confidence intervals.

Increasing 
Halo Mass
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Figure 4. Derived relation between stellar mass and halo mass. The light shaded
area shows the 1σ region while the dark and light shaded areas together show
the 2σ region. The upper panel shows the SHM relation, while the lower panel
shows the SHM ratio.

mainly the slope of the low mass end of the SMF, it is strongly
related to the parameter α of the Schechter function. A small
value of β corresponds to a high value of α.

If we change γ , this mainly impacts the slope of the massive
end of the SMF. For larger values of γ than for its best-fit value,
the slope of the massive end becomes steeper. As γ affects
mainly the slope of the massive end of the SMF, it is not coupled
to a parameter of the Schechter function though it is related to
the high-mass cutoff, assumed to be exponential in a Schechter
function.

Figure 5 shows the contours of the two-dimensional proba-
bility distributions for the parameters pairs. We see a correlation
between the parameters [M1, γ ] and [(m/M)0, γ ] and an anti-
correlation between [β, γ ], [β,M1], and [(m/M)0,M1]. There
does not seem to be a correlation between [β, (m/M)0].

4.5. Introducing Scatter

Up until now we have assumed that there is a one-to-one,
deterministic relationship between halo mass and stellar mass.
However, in nature, we expect that two halos of the same mass M
may harbor galaxies with different stellar masses, since they can
have different halo concentrations, spin parameters, and merger
histories.

For each halo of mass M, we now assign a stellar mass m
drawn from a lognormal distribution with a mean value given
by our previous expression for m(M) (Equation (2)), with a
variance of σ 2

m. We assume that the variance is a constant for
all halo masses, which means that the percent deviation from
m is the same for every galaxy. This is consistent with other

Figure 5. Correlations between the model parameters. The panels show contours
of constant χ2 (i.e., constant probability) for the fit including constraints from
the SMF only. The parameter pairs are indicated in each panel.

Table 2
Fitting Results for Stellar-to-halo Mass Relationship

log M1 (m/M)0 β γ χ2
r (Φ) χ2

r (wp)

Best fit 11.899 0.02817 1.068 0.611 1.42 4.21
σ + 0.026 0.00063 0.051 0.012
σ− 0.024 0.00057 0.044 0.010

Notes. Including scatter σm = 0.15. All masses are in units of M".

halo occupation models, SAMs and satellite kinematics (Cooray
2006; van den Bosch et al. 2007; More et al. 2009b).

Assuming a value of σm = 0.15 dex and fitting the SMF only,
we find the values given in Table 2. These values lie within the
(2σ ) error bars of the best-fit values that we obtained with no
scatter. The largest change is on the value of γ , which controls
the slope of the SHM relation at large halo masses. The SMF
and the projected CFs for the model including scatter are shown
in Figures 1 and 2, respectively, and show very good agreement
with the observed data.

In Figure 6, we compare our model without scatter with the
model including scatter. We have also included the relation
between halo mass and the average stellar mass. Especially
at the massive end scatter can influence the slope of the SMF,
since there are few massive galaxies. This has an impact on γ
and as all parameters are correlated scatter also affects the other
parameters. We thus see a difference between the model without
scatter and the most likely stellar mass in the model with scatter
in Figure 6.
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the 2σ region. The upper panel shows the SHM relation, while the lower panel
shows the SHM ratio.
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to a parameter of the Schechter function though it is related to
the high-mass cutoff, assumed to be exponential in a Schechter
function.
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m is the same for every galaxy. This is consistent with other
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halo occupation models, SAMs and satellite kinematics (Cooray
2006; van den Bosch et al. 2007; More et al. 2009b).

Assuming a value of σm = 0.15 dex and fitting the SMF only,
we find the values given in Table 2. These values lie within the
(2σ ) error bars of the best-fit values that we obtained with no
scatter. The largest change is on the value of γ , which controls
the slope of the SHM relation at large halo masses. The SMF
and the projected CFs for the model including scatter are shown
in Figures 1 and 2, respectively, and show very good agreement
with the observed data.

In Figure 6, we compare our model without scatter with the
model including scatter. We have also included the relation
between halo mass and the average stellar mass. Especially
at the massive end scatter can influence the slope of the SMF,
since there are few massive galaxies. This has an impact on γ
and as all parameters are correlated scatter also affects the other
parameters. We thus see a difference between the model without
scatter and the most likely stellar mass in the model with scatter
in Figure 6.
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related to the parameter α of the Schechter function. A small
value of β corresponds to a high value of α.

If we change γ , this mainly impacts the slope of the massive
end of the SMF. For larger values of γ than for its best-fit value,
the slope of the massive end becomes steeper. As γ affects
mainly the slope of the massive end of the SMF, it is not coupled
to a parameter of the Schechter function though it is related to
the high-mass cutoff, assumed to be exponential in a Schechter
function.
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halo occupation models, SAMs and satellite kinematics (Cooray
2006; van den Bosch et al. 2007; More et al. 2009b).

Assuming a value of σm = 0.15 dex and fitting the SMF only,
we find the values given in Table 2. These values lie within the
(2σ ) error bars of the best-fit values that we obtained with no
scatter. The largest change is on the value of γ , which controls
the slope of the SHM relation at large halo masses. The SMF
and the projected CFs for the model including scatter are shown
in Figures 1 and 2, respectively, and show very good agreement
with the observed data.

In Figure 6, we compare our model without scatter with the
model including scatter. We have also included the relation
between halo mass and the average stellar mass. Especially
at the massive end scatter can influence the slope of the SMF,
since there are few massive galaxies. This has an impact on γ
and as all parameters are correlated scatter also affects the other
parameters. We thus see a difference between the model without
scatter and the most likely stellar mass in the model with scatter
in Figure 6.
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ABSTRACT
The formation of galaxies is regulated by a balance between the supply of gas and the rate
at which it is ejected. Traditional explanations of gas ejection equate the energy required to
escape the galaxy or host halo to an estimate for the energy yield from supernovae. This
yield is usually assumed to be a constant fraction of the total available from the supernova,
or is derived from the assumption of a consistent momentum yield. By applying these ideas
in the context of a cold dark matter cosmogony, we derive a first-order analytic connection
between these working assumptions and the expected relationship between baryon content
and galaxy circular velocity, and find that these quick predictions straddle recent observational
estimates. To examine the premises behind these theories in more detail, we then explore their
applicability to a set of gasdynamical simulations of idealized galaxies. We show that different
premises dominate to differing degrees in the simulated outflow, depending on the mass of
the system and the resolution with which it is simulated. Using this study to anticipate the
emergent behaviour at arbitrarily high resolution, we motivate more comprehensive analytic
model which allows for the range of velocities with which the gas may exit the system, and
incorporates both momentum and energy-based constraints on the outflow. Using a trial exit
velocity distribution, this is shown to be compatible with the observed baryon fractions in
intermediate-mass systems, but implies that current estimates for low-mass systems cannot be
solely accounted for by supernova winds under commonly held assumptions.

Key words: supernovae: general – ISM: supernova remnants – galaxies: evolution – galaxies:
formation.

1 INTRODUC TION

Any viable theory of the formation and evolution of galaxies should
be able to account for the mass of baryons contained, or rather
not contained, in the massive collapsed regions that host galaxies.
Observational constraints on the location of baryons in the Universe
imply that the fraction within these ‘haloes’ can be many times less
than the cosmic baryon fraction, f b ≈ 0.17 (e.g. Komatsu et al.
2011), and that the extent of the deficit is clearly dependent on the
host’s mass. This can be seen from the estimated baryonic and total
masses from seven separate surveys which were collected together
in one figure in the review by McGaugh et al. (2010); data which
are reproduced here in our Fig. 1.

The established explanation for this deficit, dating from long
before such observational data were available, is that baryons can
be driven from the galaxies – and their host haloes – by supernovae
explosions (Matthews & Baker 1971). This account is based on
the premise that the energy required to escape the galaxies’ gravity
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is readily available from the supernovae. Because the gravitational
potential barrier will increase with host halo mass, the fraction of the
supernova-driven wind which escapes might intuitively be expected
to be greater for lower mass systems, and this does indeed seem to
be qualitatively upheld by the mass dependence seen in the modern
data.

A more quantitative version of this theory was then developed by
Larson (1974), who equated this potential barrier with an estimate
of the energy yield per supernova (and hence per mass of stars
formed). In Section 2, we review the arguments in this classic theory
and, by updating the basic premises to include a cold dark matter
(CDM) component in the haloes, show how it leads to the first-order
theoretical predictions for baryon fractions which are overlaid with
the observational estimates in Fig. 1. We also take the opportunity
to contrast the scaling expected from the traditional assumption, of
consistent energy conversion to the ejected material (Section 2.1),
with the alternative working assumption of a consistent momentum
yield (Section 2.2).

We then go on, in Section 3, to investigate how modern simula-
tions of disc galaxies relate to these analytic theories, using aspects
of the theory to understand the behaviour which emerges from
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Complimentary perspectives on galaxy formation

Archeological Evolutionary

Holistic...

“If the genome wants to swim in the 
ocean, it makes itself a fish; 

if the genome wants to fly in the air, it 
makes itself a bird. 

If it wants to go to Harvard, it makes 
itself a human”

George Wald (1906-1997)



From host structures to galaxies: Radii



The Astrophysical Journal Supplement Series, 195:4 (17pp), 2011 July doi:10.1088/0067-0049/195/1/4
C© 2011. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

THE OVERDENSITY AND MASSES OF THE FRIENDS-OF-FRIENDS HALOS
AND UNIVERSALITY OF HALO MASS FUNCTION

Surhud More1, Andrey V. Kravtsov1,2,3, Neal Dalal4, and Stefan Gottlöber5
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ABSTRACT

The friends-of-friends algorithm (hereafter FOF) is a percolation algorithm which is routinely used to identify
dark matter halos from N-body simulations. We use results from percolation theory to show that the boundary of
FOF halos does not correspond to a single density threshold but to a range of densities close to a critical value
that depends upon the linking length parameter, b. We show that for the commonly used choice of b = 0.2, this
critical density is equal to 81.62 times the mean matter density. Consequently, halos identified by the FOF algorithm
enclose an average overdensity which depends on their density profile (concentration) and therefore changes with
halo mass, contrary to the popular belief that the average overdensity is ∼180. We derive an analytical expression
for the overdensity as a function of the linking length parameter b and the concentration of the halo. Results of tests
carried out using simulated and actual FOF halos identified in cosmological simulations show excellent agreement
with our analytical prediction. We also find that the mass of the halo that the FOF algorithm selects crucially
depends upon mass resolution. We find a percolation-theory-motivated formula that is able to accurately correct for
the dependence on number of particles for the mock realizations of spherical and triaxial Navarro–Frenk–White
halos. However, we show that this correction breaks down when applied to the real cosmological FOF halos due to
the presence of substructures. Given that abundance of substructure depends on redshift and cosmology, we expect
that the resolution effects due to substructure on the FOF mass and halo mass function will also depend on redshift
and cosmology and will be difficult to correct for in general. Finally, we discuss the implications of our results for
the universality of the mass function.
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1. INTRODUCTION

Over the last three decades, cosmological simulations have
been playing an ever increasing role in testing cosmological
structure formation models against observations using statistics
that can be reliably measured in both. Given that most of the
available observational information is about virialized peaks in
the overall matter distribution, identification of corresponding
virialized peaks, or halos, in simulations is of critical impor-
tance.

A number of automated halo finding algorithms have been
developed over the years (e.g., Knebe et al. 2011, and references
therein). One of the most popular of these is the “friends-
of-friends” (hereafter FOF) algorithm which uniquely defines
groups that contain all particles separated by distance less than
a given linking length, bl̄, where l̄ is the mean interparticle
separation in simulations (related to the mean number density
n̄ as l̄ = n̄−1/3) and b is a free parameter of the algorithm. The
FOF algorithm is commonly applied both to identify groups of
galaxies in redshift catalogs (Huchra & Geller 1982; Press &
Davis 1982; Einasto et al. 1984; Eke et al. 2004; Berlind et al.
2006) and virialized halos in cosmological simulations (Einasto
et al. 1984; Davis et al. 1985; Frenk et al. 1988; Lacey & Cole
1994; Klypin et al. 1999; Jenkins et al. 2001; Warren et al. 2006;
Gottlöber & Yepes 2007).

An attractive feature of the FOF algorithm is its simplicity:
the result depends solely on the linking length in units of the

mean interparticle separation, b. The FOF algorithm does not
assume any particular halo shape and can therefore better match
the generally triaxial mass distribution in halos forming in hier-
archical structure formation models. In addition, studies over the
last decade indicate that the appropriately parameterized mass
function of FOF halos is universal for different redshifts and
cosmologies at least to ∼10%, although real systematic varia-
tions of !10% do exist (Jenkins et al. 2001; White 2002; Evrard
et al. 2002; Hu & Kravtsov 2003; Warren et al. 2006; Reed et al.
2007; Lukić et al. 2007; Tinker et al. 2008; Bhattacharya et al.
2011; Crocce et al. 2010; Courtin et al. 2011). Mass functions of
halos identified using the spherical overdensity (SO) algorithm,
on the other hand, exhibit considerably larger differences for
different cosmologies and redshifts (White 2002; Tinker et al.
2008). Given the importance of the halo mass function in inter-
preting observed counts of galaxies and clusters, it is interesting
to understand the origin of deviations from universality, the
role of mass definition, and differences between mass functions
defined with the FOF and SO halo finders (e.g., Audit et al.
1998; Jenkins et al. 2001; White 2001, 2002; Tinker et al. 2008;
Lukić et al. 2009). This, in turn, requires good understanding of
properties of the FOF-identified groups. For example, a recent
study by Courtin et al. (2011) shows that the degree of univer-
sality depends sensitively on the choice of the linking length
parameter b.

One could expect that for a given value of b, the FOF
algorithm defines the boundary of a halo as corresponding to a
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mean interparticle separation, b. The FOF algorithm does not
assume any particular halo shape and can therefore better match
the generally triaxial mass distribution in halos forming in hier-
archical structure formation models. In addition, studies over the
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ABSTRACT
In the standard picture of disc galaxy formation, baryons and dark matter receive the
same tidal torques, and therefore approximately the same initial specific angular mo-
mentum. However, observations indicate that disc galaxies typically have only about
half as much specific angular momentum as their dark matter haloes. We argue this
does not necessarily imply that baryons lose this much specific angular momentum as
they form galaxies. It may instead indicate that galaxies are most directly related to
the inner regions of their host haloes, as may be expected in a scenario where baryons
in the inner parts of haloes collapse first. A limiting case is examined under the ide-
alised assumption of perfect angular momentum conservation. Namely, we determine
the density contrast ∆, with respect to the critical density of the Universe, by which
dark matter haloes need to be defined in order to have the same average specific
angular momentum as the galaxies they host. Under the assumption that galaxies
are related to haloes via their characteristic rotation velocities, the necessary ∆ is
∼ 600. This ∆ corresponds to an average halo radius and mass which are ∼ 60% and
∼ 75%, respectively, of the virial values (i.e., for ∆ = 200). We refer to this radius as
the radius of baryonic collapse RBC , since if specific angular momentum is conserved
perfectly, baryons would come from within it. It is not likely a simple step function
due to the complex gastrophysics involved, therefore we regard it as an effective ra-
dius. In summary, the difference between the predicted initial and the observed final
specific angular momentum of galaxies, which is conventionally attributed solely to
angular momentum loss, can more naturally be explained by a preference for collapse
of baryons within RBC , with possibly some later angular momentum transfer.

Key words: galaxies – formation, galaxies – evolution, galaxies – kinematics and
dynamics, galaxies – fundamental properties.

1 INTRODUCTION

In the standard picture of disc galaxy formation (e.g., Fall
& Efstathiou 1980; Dalcanton, Spergel, & Summers 1997;
Mo, Mao, & White 1998), galaxies consist of a dissipa-
tive baryonic component and a non-dissipative dark matter
component. Galaxies form hierarchially, and in this process,
baryons and dark matter acquire the same specific angu-
lar momentum (j) via tidal-torques. This is because tidal-
torques are most effective in the linear and the trans-linear
regimes, when baryons and dark matter are well-mixed.

! NASA Postdoctoral Program Fellow
† E-mail: susan.kassin@nasa.gov

The dark matter then collapses non-dissipatively, and the
baryons dissipatively, likely with some cloud-cloud collisions
and possibly shocks (processes which are expected to re-
arrange j but not remove it). The baryons form rotating
centrifugally-supported discs at the centres of the potential
wells. For a review of this scenario see Fall (2002). This
standard picture is able to correctly predict galaxy prop-
erties such as scale-lengths and sizes if the baryons retain
most of their initial j. It has been extended to include ad-
ditional physics effects and larger samples of galaxies by
e.g., White & Frenk (1991), Cole et al. (1994), Somerville
& Primack (1999), de Jong & Lacey (2000), Van den Bosch
(2001), Hatton et al. (2003), and Dutton (2009).

In order for this scenario to correctly predict galaxy
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Over the last three decades, cosmological simulations have
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that can be reliably measured in both. Given that most of the
available observational information is about virialized peaks in
the overall matter distribution, identification of corresponding
virialized peaks, or halos, in simulations is of critical impor-
tance.

A number of automated halo finding algorithms have been
developed over the years (e.g., Knebe et al. 2011, and references
therein). One of the most popular of these is the “friends-
of-friends” (hereafter FOF) algorithm which uniquely defines
groups that contain all particles separated by distance less than
a given linking length, bl̄, where l̄ is the mean interparticle
separation in simulations (related to the mean number density
n̄ as l̄ = n̄−1/3) and b is a free parameter of the algorithm. The
FOF algorithm is commonly applied both to identify groups of
galaxies in redshift catalogs (Huchra & Geller 1982; Press &
Davis 1982; Einasto et al. 1984; Eke et al. 2004; Berlind et al.
2006) and virialized halos in cosmological simulations (Einasto
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Gottlöber & Yepes 2007).

An attractive feature of the FOF algorithm is its simplicity:
the result depends solely on the linking length in units of the

mean interparticle separation, b. The FOF algorithm does not
assume any particular halo shape and can therefore better match
the generally triaxial mass distribution in halos forming in hier-
archical structure formation models. In addition, studies over the
last decade indicate that the appropriately parameterized mass
function of FOF halos is universal for different redshifts and
cosmologies at least to ∼10%, although real systematic varia-
tions of !10% do exist (Jenkins et al. 2001; White 2002; Evrard
et al. 2002; Hu & Kravtsov 2003; Warren et al. 2006; Reed et al.
2007; Lukić et al. 2007; Tinker et al. 2008; Bhattacharya et al.
2011; Crocce et al. 2010; Courtin et al. 2011). Mass functions of
halos identified using the spherical overdensity (SO) algorithm,
on the other hand, exhibit considerably larger differences for
different cosmologies and redshifts (White 2002; Tinker et al.
2008). Given the importance of the halo mass function in inter-
preting observed counts of galaxies and clusters, it is interesting
to understand the origin of deviations from universality, the
role of mass definition, and differences between mass functions
defined with the FOF and SO halo finders (e.g., Audit et al.
1998; Jenkins et al. 2001; White 2001, 2002; Tinker et al. 2008;
Lukić et al. 2009). This, in turn, requires good understanding of
properties of the FOF-identified groups. For example, a recent
study by Courtin et al. (2011) shows that the degree of univer-
sality depends sensitively on the choice of the linking length
parameter b.

One could expect that for a given value of b, the FOF
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dynamics, galaxies – fundamental properties.

1 INTRODUCTION

In the standard picture of disc galaxy formation (e.g., Fall
& Efstathiou 1980; Dalcanton, Spergel, & Summers 1997;
Mo, Mao, & White 1998), galaxies consist of a dissipa-
tive baryonic component and a non-dissipative dark matter
component. Galaxies form hierarchially, and in this process,
baryons and dark matter acquire the same specific angu-
lar momentum (j) via tidal-torques. This is because tidal-
torques are most effective in the linear and the trans-linear
regimes, when baryons and dark matter are well-mixed.

! NASA Postdoctoral Program Fellow
† E-mail: susan.kassin@nasa.gov

The dark matter then collapses non-dissipatively, and the
baryons dissipatively, likely with some cloud-cloud collisions
and possibly shocks (processes which are expected to re-
arrange j but not remove it). The baryons form rotating
centrifugally-supported discs at the centres of the potential
wells. For a review of this scenario see Fall (2002). This
standard picture is able to correctly predict galaxy prop-
erties such as scale-lengths and sizes if the baryons retain
most of their initial j. It has been extended to include ad-
ditional physics effects and larger samples of galaxies by
e.g., White & Frenk (1991), Cole et al. (1994), Somerville
& Primack (1999), de Jong & Lacey (2000), Van den Bosch
(2001), Hatton et al. (2003), and Dutton (2009).

In order for this scenario to correctly predict galaxy
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ABSTRACT
Sizes of galaxies are an important diagnostic for galaxy formation models. In this study I use the abundance

matching ansatz, which has proven to be successful in reproducing galaxy clustering and other statistics, to
derive estimates of the virial radius, R200, for galaxies of different morphological types and wide range of
stellar mass. I show that over eight of orders of magnitude in stellar mass galaxies of all morphological types
follow an approximately linear relation between half-mass radius of their stellar distribution, r1/2 and virial
radius, r1/2 ≈ 0.015R200 with a scatter of ≈ 0.2 dex. Such scaling is in remarkable agreement with expectation
of models which assume that galaxy sizes are controlled by halo angular momentum, which implies r1/2 ∝
λR200, where λ is the spin of galaxy parent halo. The scatter about the relation is comparable with the scatter
expected from the distribution of λ and normalization of the relation agrees with that predicted by the model
of Mo, Mao & White (1998), if galaxy sizes were set on average at z ∼ 1 − 2. Moreover, I show that when
stellar and gas surface density profiles of galaxies of different morphological types are rescaled using radius
rn = 0.015R200, the rescaled surface density profiles follow approximately universal exponential (for late types)
and de Vaucouleurs (for early types) profiles with scatter of only ≈ 30− 50% at R ≈ 1− 3rn. Remarkably, both
late and early type galaxies have similar mean stellar surface density profiles at R ! 1rn. The main difference
between their stellar distributions is thus at R < rn. The results of this study imply that galaxy sizes and radial
distribution of baryons are shaped primarily by properties of their parent halo and that sizes of both late type
disks and early type spheroids are controlled by halo angular momentum.

1. INTRODUCTION

In the standard hierarchical structure formation scenario
galaxies form at the minima of potential wells formed by non-
linear collapse of peaks in the initial density field. The pro-
cess of galaxy formation is expected to be complex, highly
nonlinear process, involving forces on a wide range of scales,
supersonic, highly compressible and turbulent flows of gas,
and a variety of cooling, heating, and feedback processes.

Despite the apparent complexity of formation processes,
observed galaxies exhibit a number of tight scaling relations
between their structural parameters and, as first shown by Fall
& Efstathiou (1980) and elaborated by Mo, Mao, & White
(1998, see also Dalcanton et al. (1997); Avila-Reese et al.
(1998, 2008); Dutton et al. (2007); Dutton (2009); Fu et al.
(2010)), these scaling relations can be reproduced in a fairly
simple framework, in which sizes of galaxies are determined
by the sizes of their initial rotationally supported gaseous
disks, which, in turn are set by the angular momentum of
gas. Under assumption that gas angular momentum is propor-
tional to that of dark matter, such models predict that galaxy
size should scale as ∝ λR200, where R200 is the “virial” ra-
dius defined as the radius enclosing overdensity of 200 with
respect to the critical density of the universe, ρcr(z), so that
M200 = (4π/3)200ρcr(z)R3

200.
In addition, regularity in galaxy properties is implied by

success of the abundance matching ansatz, in which relation
between total mass of halos, M, and stellar mass of galax-
ies they host, M∗ is derived from a simple assumption that
the relation is approximately monotonic and cumulative abun-
dance of galaxies with masses above a given M∗ is matched
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to cumulative number density of halos with masses above M.
This model is remarkably successful in reproducing cluster-
ing of galaxies of different luminosities and at different red-
shifts (Kravtsov et al. 2004; Tasitsiomi et al. 2004; Conroy
et al. 2006; Reddick et al. 2012) and other statistics (Vale &
Ostriker 2004, 2006; Behroozi et al. 2010, 2012; Guo et al.
2010; Moster et al. 2012; Hearin et al. 2012).

In this paper, I use the abundance matching ansatz to exam-
ine relation between sizes of stellar systems of galaxies, char-
acterized by the three-dimensional half-mass radius, r1/2 and
virial radius of their halos, R200, derived using the abundance
matching ansatz. I show that over the entire observed range of
stellar masses and morphologies, galaxies exhibit an approxi-
mately linear scaling relation between stellar half-mass radius
and halo virial radius with normalization and scatter consis-
tent with expectation of the Mo et al. (1998) model. Further-
more, I show that stellar and gas surface density profiles of
galaxies rescaled using radius rn = 0.015R200 follow univer-
sal profiles with a scatter as low as ≈ 30−50% at intermediate
radii within optical extent of galaxies.

Throughout this paper I assume a flat ΛCDM model with
parameters Ωm = 1 − ΩΛ = 0.27, Ωb = 0.0469, h =
H0/(100 km s−1 Mpc−1) = 0.7, σ8 = 0.82 and ns = 0.95 com-
patible with combined constraints from WMAP, BAO, SNe,
and cluster abundance (Komatsu et al. 2011).

2. ABUNDANCE MATCHING

To estimate the virial masses and radii of halos hosting
galaxies, I use the abundance matching ansatz, in which rela-
tion between total halo mass, M, and stellar mass of galaxies
they host, M∗, is established implicitly by matching cumula-
tive stellar and halo mass functions: nh(> M) = ng(> M∗).

A number of estimates of the M∗ − M relation using this
technique has been presented in the recent literature (e.g.,
Moster et al. 2012; Behroozi et al. 2012). However, the re-
lations derived in these studies are based on stellar mass func-
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ABSTRACT
Sizes of galaxies are an important diagnostic for galaxy formation models. In this study I use the abundance

matching ansatz, which has proven to be successful in reproducing galaxy clustering and other statistics, to
derive estimates of the virial radius, R200, for galaxies of different morphological types and wide range of
stellar mass. I show that over eight of orders of magnitude in stellar mass galaxies of all morphological types
follow an approximately linear relation between half-mass radius of their stellar distribution, r1/2 and virial
radius, r1/2 ≈ 0.015R200 with a scatter of ≈ 0.2 dex. Such scaling is in remarkable agreement with expectation
of models which assume that galaxy sizes are controlled by halo angular momentum, which implies r1/2 ∝
λR200, where λ is the spin of galaxy parent halo. The scatter about the relation is comparable with the scatter
expected from the distribution of λ and normalization of the relation agrees with that predicted by the model
of Mo, Mao & White (1998), if galaxy sizes were set on average at z ∼ 1 − 2. Moreover, I show that when
stellar and gas surface density profiles of galaxies of different morphological types are rescaled using radius
rn = 0.015R200, the rescaled surface density profiles follow approximately universal exponential (for late types)
and de Vaucouleurs (for early types) profiles with scatter of only ≈ 30− 50% at R ≈ 1− 3rn. Remarkably, both
late and early type galaxies have similar mean stellar surface density profiles at R ! 1rn. The main difference
between their stellar distributions is thus at R < rn. The results of this study imply that galaxy sizes and radial
distribution of baryons are shaped primarily by properties of their parent halo and that sizes of both late type
disks and early type spheroids are controlled by halo angular momentum.

1. INTRODUCTION

In the standard hierarchical structure formation scenario
galaxies form at the minima of potential wells formed by non-
linear collapse of peaks in the initial density field. The pro-
cess of galaxy formation is expected to be complex, highly
nonlinear process, involving forces on a wide range of scales,
supersonic, highly compressible and turbulent flows of gas,
and a variety of cooling, heating, and feedback processes.

Despite the apparent complexity of formation processes,
observed galaxies exhibit a number of tight scaling relations
between their structural parameters and, as first shown by Fall
& Efstathiou (1980) and elaborated by Mo, Mao, & White
(1998, see also Dalcanton et al. (1997); Avila-Reese et al.
(1998, 2008); Dutton et al. (2007); Dutton (2009); Fu et al.
(2010)), these scaling relations can be reproduced in a fairly
simple framework, in which sizes of galaxies are determined
by the sizes of their initial rotationally supported gaseous
disks, which, in turn are set by the angular momentum of
gas. Under assumption that gas angular momentum is propor-
tional to that of dark matter, such models predict that galaxy
size should scale as ∝ λR200, where R200 is the “virial” ra-
dius defined as the radius enclosing overdensity of 200 with
respect to the critical density of the universe, ρcr(z), so that
M200 = (4π/3)200ρcr(z)R3

200.
In addition, regularity in galaxy properties is implied by

success of the abundance matching ansatz, in which relation
between total mass of halos, M, and stellar mass of galax-
ies they host, M∗ is derived from a simple assumption that
the relation is approximately monotonic and cumulative abun-
dance of galaxies with masses above a given M∗ is matched
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to cumulative number density of halos with masses above M.
This model is remarkably successful in reproducing cluster-
ing of galaxies of different luminosities and at different red-
shifts (Kravtsov et al. 2004; Tasitsiomi et al. 2004; Conroy
et al. 2006; Reddick et al. 2012) and other statistics (Vale &
Ostriker 2004, 2006; Behroozi et al. 2010, 2012; Guo et al.
2010; Moster et al. 2012; Hearin et al. 2012).

In this paper, I use the abundance matching ansatz to exam-
ine relation between sizes of stellar systems of galaxies, char-
acterized by the three-dimensional half-mass radius, r1/2 and
virial radius of their halos, R200, derived using the abundance
matching ansatz. I show that over the entire observed range of
stellar masses and morphologies, galaxies exhibit an approxi-
mately linear scaling relation between stellar half-mass radius
and halo virial radius with normalization and scatter consis-
tent with expectation of the Mo et al. (1998) model. Further-
more, I show that stellar and gas surface density profiles of
galaxies rescaled using radius rn = 0.015R200 follow univer-
sal profiles with a scatter as low as ≈ 30−50% at intermediate
radii within optical extent of galaxies.

Throughout this paper I assume a flat ΛCDM model with
parameters Ωm = 1 − ΩΛ = 0.27, Ωb = 0.0469, h =
H0/(100 km s−1 Mpc−1) = 0.7, σ8 = 0.82 and ns = 0.95 com-
patible with combined constraints from WMAP, BAO, SNe,
and cluster abundance (Komatsu et al. 2011).

2. ABUNDANCE MATCHING

To estimate the virial masses and radii of halos hosting
galaxies, I use the abundance matching ansatz, in which rela-
tion between total halo mass, M, and stellar mass of galaxies
they host, M∗, is established implicitly by matching cumula-
tive stellar and halo mass functions: nh(> M) = ng(> M∗).

A number of estimates of the M∗ − M relation using this
technique has been presented in the recent literature (e.g.,
Moster et al. 2012; Behroozi et al. 2012). However, the re-
lations derived in these studies are based on stellar mass func-
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Sizes of galaxies are an important diagnostic for galaxy formation models. In this study I use the abundance

matching ansatz, which has proven to be successful in reproducing galaxy clustering and other statistics, to
derive estimates of the virial radius, R200, for galaxies of different morphological types and wide range of
stellar mass. I show that over eight of orders of magnitude in stellar mass galaxies of all morphological types
follow an approximately linear relation between half-mass radius of their stellar distribution, r1/2 and virial
radius, r1/2 ≈ 0.015R200 with a scatter of ≈ 0.2 dex. Such scaling is in remarkable agreement with expectation
of models which assume that galaxy sizes are controlled by halo angular momentum, which implies r1/2 ∝
λR200, where λ is the spin of galaxy parent halo. The scatter about the relation is comparable with the scatter
expected from the distribution of λ and normalization of the relation agrees with that predicted by the model
of Mo, Mao & White (1998), if galaxy sizes were set on average at z ∼ 1 − 2. Moreover, I show that when
stellar and gas surface density profiles of galaxies of different morphological types are rescaled using radius
rn = 0.015R200, the rescaled surface density profiles follow approximately universal exponential (for late types)
and de Vaucouleurs (for early types) profiles with scatter of only ≈ 30− 50% at R ≈ 1− 3rn. Remarkably, both
late and early type galaxies have similar mean stellar surface density profiles at R ! 1rn. The main difference
between their stellar distributions is thus at R < rn. The results of this study imply that galaxy sizes and radial
distribution of baryons are shaped primarily by properties of their parent halo and that sizes of both late type
disks and early type spheroids are controlled by halo angular momentum.

1. INTRODUCTION

In the standard hierarchical structure formation scenario
galaxies form at the minima of potential wells formed by non-
linear collapse of peaks in the initial density field. The pro-
cess of galaxy formation is expected to be complex, highly
nonlinear process, involving forces on a wide range of scales,
supersonic, highly compressible and turbulent flows of gas,
and a variety of cooling, heating, and feedback processes.

Despite the apparent complexity of formation processes,
observed galaxies exhibit a number of tight scaling relations
between their structural parameters and, as first shown by Fall
& Efstathiou (1980) and elaborated by Mo, Mao, & White
(1998, see also Dalcanton et al. (1997); Avila-Reese et al.
(1998, 2008); Dutton et al. (2007); Dutton (2009); Fu et al.
(2010)), these scaling relations can be reproduced in a fairly
simple framework, in which sizes of galaxies are determined
by the sizes of their initial rotationally supported gaseous
disks, which, in turn are set by the angular momentum of
gas. Under assumption that gas angular momentum is propor-
tional to that of dark matter, such models predict that galaxy
size should scale as ∝ λR200, where R200 is the “virial” ra-
dius defined as the radius enclosing overdensity of 200 with
respect to the critical density of the universe, ρcr(z), so that
M200 = (4π/3)200ρcr(z)R3

200.
In addition, regularity in galaxy properties is implied by

success of the abundance matching ansatz, in which relation
between total mass of halos, M, and stellar mass of galax-
ies they host, M∗ is derived from a simple assumption that
the relation is approximately monotonic and cumulative abun-
dance of galaxies with masses above a given M∗ is matched
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to cumulative number density of halos with masses above M.
This model is remarkably successful in reproducing cluster-
ing of galaxies of different luminosities and at different red-
shifts (Kravtsov et al. 2004; Tasitsiomi et al. 2004; Conroy
et al. 2006; Reddick et al. 2012) and other statistics (Vale &
Ostriker 2004, 2006; Behroozi et al. 2010, 2012; Guo et al.
2010; Moster et al. 2012; Hearin et al. 2012).

In this paper, I use the abundance matching ansatz to exam-
ine relation between sizes of stellar systems of galaxies, char-
acterized by the three-dimensional half-mass radius, r1/2 and
virial radius of their halos, R200, derived using the abundance
matching ansatz. I show that over the entire observed range of
stellar masses and morphologies, galaxies exhibit an approxi-
mately linear scaling relation between stellar half-mass radius
and halo virial radius with normalization and scatter consis-
tent with expectation of the Mo et al. (1998) model. Further-
more, I show that stellar and gas surface density profiles of
galaxies rescaled using radius rn = 0.015R200 follow univer-
sal profiles with a scatter as low as ≈ 30−50% at intermediate
radii within optical extent of galaxies.

Throughout this paper I assume a flat ΛCDM model with
parameters Ωm = 1 − ΩΛ = 0.27, Ωb = 0.0469, h =
H0/(100 km s−1 Mpc−1) = 0.7, σ8 = 0.82 and ns = 0.95 com-
patible with combined constraints from WMAP, BAO, SNe,
and cluster abundance (Komatsu et al. 2011).

2. ABUNDANCE MATCHING

To estimate the virial masses and radii of halos hosting
galaxies, I use the abundance matching ansatz, in which rela-
tion between total halo mass, M, and stellar mass of galaxies
they host, M∗, is established implicitly by matching cumula-
tive stellar and halo mass functions: nh(> M) = ng(> M∗).

A number of estimates of the M∗ − M relation using this
technique has been presented in the recent literature (e.g.,
Moster et al. 2012; Behroozi et al. 2012). However, the re-
lations derived in these studies are based on stellar mass func-
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tions (SMFs) known to underestimate abundance of massive
galaxies (Bernardi et al. 2010) and the double power law fit to
the M∗ − M relation of Moster et al. (2012) does not capture
the upturn in the relation at M∗ ! 109 M# originating from the
steepening of the stellar mass function at these masses (Baldry
et al. 2008, 2012; Papastergis et al. 2012). Therefore, in this
study I re-derive the M∗ − M relation to fix these problems.

I use the Tinker et al. (2008) calibration of the halo mass
function for M200, which was calibrated using host halos only.
To account for subhalos, I correct the host mass function by
subhalo fraction, fsub(> M) = [ntot(> M)−nhost(> M)]/nhost(>
M), to get ntot(> M) – the mass function that includes both
hosts and subhalos. The latter was calculated using current
M200 masses for hosts and corresponding masses at the ac-
cretion epoch for subhalos using z = 0 halo catalog halo
catalog of Behroozi et al. (2011) derived from the Bolshoi
simulation (Klypin et al. 2011) of (250h−1Mpc)3 volume in
the concordance cosmology adopted in this study. The sub-
halo fraction in the Bolshoi simulation is parametrized as
fsub = min[0.35, 0.085(15− log10 M200)]. The halo mass func-
tion derived from the Bolshoi simulation agrees within 5%
with the Tinker et al. (2008) parameterization, but the latter is
more accurate at the highest halo masses.

I combine two recent calibrations of the SMF by Papaster-
gis et al. (2012) and Bernardi et al. (2010) to accurately char-
acterize SMF behavior at both small and large M∗, respec-
tively. I use these two calibrations to construct a combined
stellar mass function, n(M∗) = max[nP12, nB10], that spans
from M∗ ≈ 107M# to M∗ ≈ 1012 M#. Both stellar mass func-
tions assume Chabrier (2003) IMF to estimate stellar masses
of galaxies. For nP12 I adopt double Schechter form given
by eq. 6 of Baldry et al. (2012) with the following param-
eters: log10 M∗ = 10.66, φ∗1 = 3.96 × 10−3, α1 = −0.35,
φ∗2 = 6.9× 10−4, α2 = −1.57. These parameters are in general
agreement with the best fit parameters derived for the local
stellar mass function by Baldry et al. (2012). Note that SMF
at M∗ ! 108 M# is quite uncertain due to incompleteness of
low surface brightness galaxies in this regime (Baldry et al.
2012); the current SMF measurements at these stellar masses
should be considered as lower limits and the actual SMF may
be somewhat steeper still. For nB10 I use parameter values
given in the bottom row of Table 4 in Bernardi et al. (2010,
unbracketed values) and the Schechter parametrization of the
SMF given by eq. 9 in that paper. I refer readers to the origi-
nal papers for further details on how the stellar mass functions
were estimated.

3. GALAXY SAMPLES

To estimate the size–virial radius relation, I have selected
several publicly available datasets chosen to span the entire
range of galaxy stellar masses4 and morphologies. First,
I use a compilation of stellar masses and effective radii
for spheroidal, early-type galaxies from Misgeld & Hilker
(2011). These include ellipticals (Es) and dwarf elliptical (dE)
galaxies in the Virgo cluster with HST (Ferrarese et al. 2006)
and the VLT/FORS1 observations of dEs in the Hydra I and
Centaurus clusters (Misgeld et al. 2008, 2009), and the dwarf
spheroidal (dSph) galaxies in the Local Group. The sample of
late type galaxies includes the THINGS/HERACLES galax-
ies of Leroy et al. (2008) and the LITTLE THINGS sam-
ple of dwarf irregular galaxies from Zhang et al. (2012). I

4 Stellar masses in all of the samples were estimated assuming the Chabrier
(2003) IMF.

Fig. 1.— Relation between half-mass radius of stellar distribution in galax-
ies of different stellar masses (spanning more than eight orders of magnitude
in stellar mass) and morphological types and inferred virial radius of their
parent halos, R200, defined as the radius enclosing overdensity of 200ρcr, and
estimated as described in § 2. The red pentagons and hexagons show a sam-
ple of elliptical and dwarf elliptical galaxies from the compilation of Misgeld
& Hilker (2011); blue circles are the late type galaxies from the samples of
Leroy et al. (2008) and Zhang et al. (2012) with half-mass radii estimated
as described in § 3, while the star symbol shows the Milky Way; the red
cartwheel points show the Local Group dwarf spheroidal galaxies from the
compilation of Misgeld & Hilker (2011). The light blue dashed line and
dot-dashed orange line show the average relations derived for late and early-
type galaxies, respectively, from the average R1/2 − M∗ relations of Bernardi
et al. (2012). Dark red shaded band shows 2σ scatter around the mean re-
lation calculated for all galaxies in the Bernardi et al. (2012) sample. The
orange dot-dashed line with error bars shows the mean relation and 2σ scat-
ter for massive SDSS galaxies presented in Szomoru et al. (2012); individual
galaxies from this sample are shown by blue (Sérsic index n < 2.5) and red
(n > 2.5) dots. The gray dashed line shows linear relation r1/2 = 0.015R200
and dotted lines are linear relations offset by 0.5 dex, which approximately
corresponds to the scatter in galaxy sizes from distribution of halo spin pa-
rameter λ under assumption that r1/2 ∝ λR200.

also include the stellar mass profile of the Milky Way us-
ing a combination of thin and thick stellar disks with pa-
rameters given in Table 2 of McMillan (2011). For the late
type samples, I used the deprojected stellar surface density
profiles presented in these studies to estimate the half mass
radius, r1/2, directly from profiles. The radius r1/2 was de-
termined as the radius that contains half of the stellar mass
of galaxies using the cumulative mass profile of each disk:
M∗(< R) = 2π

∫ R
0 Σ(R′)R′dR′.

In addition, I use the average relations between half-light
radius and stellar mass, 〈r1/2|M∗〉, derived for early and late
type galaxies in the SDSS from the recent study by Bernardi
et al. (2012, SerExp values in their Table 4). I also use intrin-
sic scatter about the mean relation calculated for both early
and late type galaxies (M. Bernardi 2012, priv. communica-
tion). Finally, I use a half-mass radii and stellar masses for a
sample of massive SDSS galaxies presented in Szomoru et al.
(2012, see their Table 1).


