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Two distinct galaxy components

Models of galaxy formation draw fundamental distinctions
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between disk and spheroidal galaxy components. Stellar disks

@ form directly from cooling gas, while spheroids are typically
formed by merging or disturbing previously formed stellar
disks. They therefore represent distinct periods in a galaxy’s
history and possess contrasting stellar populations. §

Motivation

The distinct stellar structural components of galaxies — bulges, disks, bars and finer features — retain detailed

‘memories’ of their assembly and star-formation histories. This valuable information is greatly degraded

when the components are averaged over, for example through the use of aperture photometry, as typical in

the analysis of large surveys. Classifying galaxies by morphological type (or proxies, such as concentration
or colour) allows one to consider subsets of similar objects, but does not overcome the key averaging issue.

Quantifying the spatial, kinematic and spectral energy distributions of the separate structural components in
the Milky Way and other individual nearby galaxies, has proved essential to our knowledge of the basic
physics governing the formation and evolution of these systems. Accessing similar information for very

large samples of galaxies, covering wide ranges of mass and environment, will similarly allow us to

differentiate between the various plausible mechanisms that may operate on the galaxy population.

Current extragalactic surveys already produce well-resolved images for hundreds of thousands of galaxies in

a variety of wavebands. The areal coverage, depth and spatial resolution of imaging surveys is rapidly

increasing. At the same time resolved galaxy images are being obtained over wider wavelength ranges and

with finer wavelength sampling. There is a need to make optimal use of these multi-wavelength datasets in

order to address key questions of galaxy evolution.

The value of colour information

approaches to galaxy decomposition.

Spheroid and disk components generally possess
different colours. This provides extremely useful
information when separating their contributions to
galaxy images, but this is neglected by conventional

In a single-band image it is difficult to determine

whether each galaxy would be best fit by a single

component or a combination of bulge and disk, ™

never mind their relative sizes and shapes. When

colour information is added, it becomes much more
apparent when a galaxy is a bulge-disk system.

simulated monochromatic observations

simulated colour observations

Fit robustness and model selection

A significant fraction of galaxy bulge-disk decompositions fail to produce physically meaningful

models (commonly ~25%, even on good data). A important cause of this is the presence of
unmodelled features: bars, spiral arms, star-formation regions, nuclear sources, unmasked

neighbouring galaxies, foreground stars, etc. Somehow accounting for the expected presence of
these varied features could greatly improve the robustness of galaxy decomposition.

Our solutions

We have adapted GALFIT3 and GALAPAGOS
to fit arbitrary sets of pixel-registered multi-

A single wavelength-dependent model

Our approach is to replace each standard parameter of a
| . . GALFIT model with a function of wavelength with user-
band images in a very flexible manner. selectable smoothness. We choose to use a series of

GALFITM also adds options of including a Chebyshev polynomials for convenience.

non-parametric component or performing a

. . m where Ti(A) is the ith Chebyshev polynomial:
more rigorous exploration of parameter space. FO) = Z TN To) =1, TiA) —x,
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GALAPAGOS-2 allows one to apply GALFITM

to perform single-Sérsic and bulge-disk fits to The fit is then performed to find the optimal coefficients, c;.

large surveys in an automated manner. The order, m, of the polynomial may be selected for each
parameter. Choosing m equal to the number of bands gives
- : full freedom, while m =0 ires th t lue tob
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wavelength.
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Adding a non-parametric component

We have implemented a method to account for the presence
of galaxy features which cannot be fit by simple parametric
models. A “non-parametric” image of these features is
gradually constructed by wavelet filtering the residuals
periodically during the usual fitting process. The non-
parametric image is subtracted from the original data and
the parametric model is fit to this. The resulting parametric
model tends to be a better representation of the smooth
stellar components. The colours of the non-parametric
image may be constrained to be homogeneous, which may
help to isolate coherent features. §

Thoroughly sampling parameter space

We have implemented the MultiNest sampling algorithm
(Feroz et al. 2009, MNRAS, 398, 1601) as an alternative to the
Levenberg-Marquardt downhill method. Although costly in
terms of CPU time, this enables one to more reliably find the
global maximum likelihood solution, determine accurate
confidence intervals. We are also exploring the use of the
resulting Bayesian Evidence, and other methods, to select
the appropriate model.
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typical ~16 bulge-disk galaxy
in a ugrizYJHK GAMA-like
dataset, fitted with multi-band
models using GALFITM.

galaxies in large surveys
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The University of

Nottingham

UNITED KINGDOM - CHINA - MALAYSIA

i 0y glia g gylmianaly,
Carnegie Mellon Qatar

Ph €
ol s 4l ) Gyhaill - dgonall

Qatar National Research Fund

Member of Qatar foundation

== STFC

GAMA




