Shaping the metal enrichment history of the IGM with a high-resolution spectrograph at the E-ELT

Valentina D'Odorico – INAF Trieste Observatory

Francesco Calura, Miriam Centurion, Stefano Cristiani, Guido Cupani, Edoardo Tescari, Matteo Viel

Shaping E-ELT Science and Instrumentation

Metals in the IGM: why do we bother?

Shaping E-ELT Science and Instrumentation

3 Key Questions in Cosmology and Galaxy Formation

When and how was the Universe reionized (H and HeII) ?

Which sources contribute to the UV ionizing background at the different redshifts?

What is the nature of feedback processes in galaxies and AGN?

At z >1.5 about 90 % of the baryons are diffused in the IGM

Constant interplay between galaxies and IGM

IGM gas feeds galaxies in the formation process

SNe and AGN driven winds deposit enriched gas in the outskirts of galaxies

METALS are tracers of the life cycle of gas

Metals in the IGM: why?

Different enrichment scenarii predict different metal properties

Metals outflowing from starburst galaxies at z~2-3 and confined in their proximity? (e.g. Adelberger+ 2003,2005)

> Metals sprinkled-in by the first ionizing sources at z>>6? (e.g. Madau, Ferrara & Rees 2001)

Metals in the IGM: how do we study them?

Metals in the IGM: how?

12345

Shaping E-ELT Science and Instrumentation

Metals in the IGM: how?

Ly-alpha forest lines trace the IGM density fluctuations

Metals in the IGM: how?

Metals outside galaxies detected by their absorption lines in highz QSO spectra, thanks to the advent of 8-10m class telescopes and high res spectrographs (HIRES, UVES)

All Lya systems with log N(HI) > 15 and 50-60 % of those with log N(HI) > 14.5 show associated CIV lines

 $10^{-3} < Z/Z_{o} < 10^{-2}$ at z~2-3

Probability distribution function of b(CIV)

12345

Tescari et al. 2010

- What is the distribution of metals (wrt galaxies, volume filling factor) ?
- What are the relative abundances of chemical elements?
- What is the ionization state of the observed elements?
- What is the evolution with redshift of the previous properties?

Metals in the IGM: the role of HIRES at the E-ELT

Low density IGM High redshift IGM

HIRES

TOP LEVEL REQUIREMENTS

•Targets: point sources •Spectral coverage: 0.37-2.45 μm •Spectral resolution: ~100,000 + single obj Multiplex at lower resolution •AO assisted mode in the NIR

Resolution

•See talk by R. Maiolino

HIRES 100000 80000 60000 UVES (1as) 40000 ່ 20000 X-shooter (1/0.9/0.9as) 10000 8000 6000 200 400 600 1000 2000 800

Wavelength (nm)

ESO biased view of the most

performing spectrographs

Discriminate between:

- different enrichment scenarii;
- different kind of winds

Valentina D'Odorico INAF- Trieste

Shaping E-ELT Science and Instrumentation

123456

Metals in the IGM: low density

Direct detection with UVES @ VLT

Shaping E-ELT Science and Instrument Wievelength (A)

Metals in the IGM: low density

123456

Pixel Optical Depth (POD)

Statistical approach to detect metals at lower densities (Cowie & Songaila 1998; Ellison et al. 1999, 2000; Aguirre et al. 2002)

 $F = exp(-\tau)$: correlate the optical depth in HI with that of metals (CIV, OVI, SiIV)

Significant correlation \rightarrow metal detected

Valentina D'Odorico INAF- Trieste

Shaping E-ELT Science and Instrumentation

Metals in the IGM: low density

123456

Pixel Optical Depth (POD) Median metallicity

HI and CIV optical depth translated into δ and [C/H] with simulations and Cloudy

Schaye et al. 2003

Shaping E-ELT Science and Instrumentation

0.8

0.6

0.4

CONCLUSION

Metals in the IGM: low density

Both direct detection of metal lines and statistical detection of metallicity at the mean density (and below) require HIGHER SIGNAL TO NOISE and **HIGH RESOLUTION**

123456

10.00

100.00

Cumulative mass fraction

1.00

Reaching the mean density with HIRES@ELT

Shaping E-ELT Science and Instrumentation

12345

1**2**345

The CIV cosmic mass density

$$\Omega_{\rm C\,IV} = \frac{H_0 \, m_{\rm C\,IV}}{c \, \rho_{\rm crit}} \int N f(N) \, \mathrm{d}N \Longrightarrow \Omega_{\rm C\,IV} = \frac{H_0 \, m_{\rm C\,IV}}{c \, \rho_{\rm crit}} \frac{\sum_i N_i({\rm C\,IV})}{\Delta X}$$

12345

Lines with 13.4 < NCIV < 15

Only strong lines 13.8 < NCIV < 15

Shaping E-ELT Science and Instrumentation

12345

Reaching high redshift with HIRES@ELT

Metals in the IGM: near future perspectives

★ X-shooter LP: 100 spectra of QSOs with z>3.5
 ◆ Extension of the CIV sample (fill the redshift gap)
 ◆ Selection of interesting objects to be followed with UVES

UVES/HIRES archives and new observations

Bright quasars at z~6-8 in the south from ongoing and future surveys

ESPRESSO@VLT (expected 2016) Few objects observed at the highest resolution (variability of fundamental constants) Super-UVES mode at the incoherent focus of the 4UTs

Summary

- The study of metals in the IGM provides key information on the nature of feedback and the process of re-ionization;
- Present observations and simulations have answered to the basic questions, now we want to know more details;
- HIRES@EELT with ~10⁵ resolution and coverage extended to the NIR will finally allow to probe the mean density and below, up to the highest redshift -> solve the metal enrichment conundrum
- In the meantime: X-shooter, UVES, ESPRESSO