## 4MOST: 4-metre Multi-Object Spectroscopic Telescope

### Roelof de Jong *AIP*

### www.4most.eu

## Conceptual Design Study for ESO



- Now: Conceptual Design study, completed by Feb 2013
- Science: space mission follow-up: Gaia, eROSITA, Euclid
- Selection: 4MOST/MOONS decided ~May 2013
- Goal: start all-sky *public* surveys 2019
- Telescope: VISTA, 4m-class telescope
- Data: yearly public data releases with higher level data products
- Expected specs:
  - Very high multiplex: ~2400 fibers
  - Full optical wavelength coverage: 390-950 nm
  - Large field-of-view: ∅=2.6°
- 4MOST provides in a 5 year, all-hemisphere survey
  - >20 ×10<sup>6</sup> spectra @ R~5000 to  $m_V$ ~20 mag at S/N=20
  - > 1 × 10<sup>6</sup> spectra @ R~20,000 to m<sub>V</sub>~16 mag at S/N=50

Roelof de Jong | 4MOST



#### 4MOST – 4-metre Multi-Object Spectroscopic Telescope

Roelof S. de Jong<sup>a</sup>, Olga Bellido-Tirado<sup>a</sup>, Cristina Chiappini<sup>a</sup>, Éric Depagne<sup>a</sup>, Roger Havnes<sup>a,n</sup> Diane Johl<sup>a</sup>, Olivier Schnurr<sup>a</sup>, Axel Schwope<sup>a</sup>, Jakob Walcher<sup>a</sup>, Frank Dionies<sup>a</sup>, Dionne Havnes<sup>a,n</sup> Andreas Kelz<sup>a</sup>, Francisco S, Kitaura<sup>a</sup>, Georg Lamer<sup>a</sup>, Ivan Minchev<sup>a</sup>, Volker Müller<sup>a</sup>, Sebastián E. Nuza<sup>a</sup>, Jean-Christophe Olaya<sup>a,n</sup>, Tilmann Piffl<sup>a</sup>, Emil Popow<sup>a</sup>, Matthias Steinmetz<sup>a</sup>, Uğur Ural<sup>a</sup>, Mary Williams<sup>a</sup>, Roland Winkler<sup>a</sup>, Lutz Wisotzki<sup>a</sup>, Wolfgang R, Ansorge<sup>b</sup>, Manda Banerii<sup>c</sup>, Eduardo Gonzalez Solares<sup>c</sup>, Mike Irwin<sup>c</sup>, Robert C. Kennicutt, Jr.<sup>c</sup>, David King<sup>c</sup>, Richard McMahon<sup>c</sup>, Sergey Koposov<sup>c</sup>, Ian R. Parry<sup>c</sup>, David Sun<sup>c</sup>, Nicholas A. Walton<sup>c</sup>, Gert Finger<sup>d</sup>, Olaf Iwert<sup>d</sup>, Mirko Krumpe<sup>d</sup>, Jean-Louis Lizon<sup>d</sup>, Mainieri Vincenzo<sup>d</sup>, Jean-Philippe Amans<sup>e</sup>, Piercarlo Bonifacio<sup>e</sup>, Mathieu Cohen<sup>e</sup>, Patrick Francois<sup>e</sup>, Pascal Jagourel<sup>e</sup>, Shan B. Mignot<sup>e</sup>, Frédéric Royer<sup>e</sup>, Paola Sartoretti<sup>e</sup>, Ralf Bender<sup>f</sup>, Frank Grupp<sup>f</sup>, Hans-Joachim Hess<sup>t</sup>, Florian Lang-Bardl<sup>t</sup>, Bernard Muschielok<sup>t</sup>, Hans Böhringer<sup>g</sup>, Thomas Boller<sup>g</sup>, Angela Bongiorno<sup>g</sup>, Marcella Brusa<sup>g</sup>, Tom Dwelly<sup>g</sup>, Andrea Merloni<sup>g</sup>, Kirpal Nandra<sup>g</sup>, Mara Salvato<sup>g</sup>, Johannes H. Pragt<sup>h</sup>, Ramón Navarro<sup>h</sup>, Gerrit Gerlofsma<sup>h</sup>, Ronald Roelfsema<sup>h</sup>, Gavin B. Dalton<sup>i,o</sup>, Kevin F. Middleton<sup>i</sup>, Ian A. Tosh<sup>i</sup>, Corrado Boeche<sup>j</sup>, Elisabetta Caffau<sup>j</sup>, Norbert Christlieb<sup>j</sup>, Eva K. Grebel<sup>j</sup>, Camilla Hansen<sup>j</sup>, Andreas Koch<sup>j</sup>, Hans-G. Ludwig<sup>j</sup>, Andreas Quirrenbach<sup>j</sup>, Luca Sbordone<sup>j</sup>, Walter Seifert<sup>j</sup>, Guido Thimm<sup>j</sup>, Trifon Trifonov<sup>j</sup>, Amina Helmi<sup>k</sup>, Scott C, Trager<sup>k</sup>, Sofia Feltzing<sup>l</sup>, Andreas Korn<sup>m</sup>, Wilfried Boland<sup>n</sup>

<sup>a</sup>Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam, Germany, <sup>b</sup>RAMS-CON Management Consultants, Assling, Germany, <sup>c</sup>University of Cambridge, United Kingdom, <sup>d</sup> European Southern Observatory, Garching bei München, Germany, <sup>e</sup> GEPI, Observatoire de Paris-Meudon, CNRS, Univ. Paris Diderot, France, <sup>f</sup> Universität-Sternwarte München, Germany, <sup>g</sup> Max-Planck-Institut für extraterrestrische Physik, München, Germany, <sup>h</sup>NOVA-ASTRON, Dwingeloo, the Netherlands, <sup>i</sup> Rutherford Appleton Lab., United Kingdom, <sup>j</sup>Zentrum für Astronomie der Universität Heidelberg, Germany, <sup>k</sup> Kapteyn Astronomical Institute, Groningen, the Netherlands, <sup>1</sup>University of Lund, Sweden, <sup>m</sup>University of Uppsala, Sweden, <sup>n</sup>innoFSPEC, Potsdam, Germany, <sup>o</sup>University of Oxford, United Kingdom, <sup>n</sup>NOVA, the Netherlands

#### SPIE paper http://arxiv.org/abs/1206.6885





AIP, LSW, LMU, MPE (D), IoA, RAL (UK), NOVA, RuG (NL), GEPI (F), LU, UU (S), ESO

Roelof de Jong | 4MOST





#### – <u>4MOST runs all the time</u>:

minimal instrument changes, no significant time sharing

#### – <u>Coordinated system</u>:

survey and target selection, strategy for operating surveys in parallel, instrument capabilities, and data product delivery are all part of facility and are tuned to work together

### - One design fits many (4most) science cases:

minimize constraints on science cases, but the number of observing modes (e.g. spectrograph configurations) should be kept to a minimum

### - Open data policy:

all surveys public: raw data published immediately, higher-level data products in yearly Data Releases



### **Instrument Specification**

AIP

| Specification                                         | Concept Design                                   |
|-------------------------------------------------------|--------------------------------------------------|
| Field-of-View (hexagon)                               | 4.3 degree <sup>2</sup> (Ø>2.6°)                 |
| Multiplex fiber positioner                            | ~2400                                            |
| Medium Resolution Spectrographs<br>Fibres<br>Passband | R~5000-8000<br>1600 fibres<br>390-930 nm         |
| High Resolution Spectrograph<br>Fibres<br>Passband    | R~20,000<br>800 fibres<br>395-456.5 & 587-673 nm |
| # of fibers in $\emptyset = 2$ ' circle               | >5                                               |
| Area (5 year survey)                                  | >2h x 20,000 deg <sup>2</sup>                    |
| Objects (5 year survey)                               | >15x10 <sup>6</sup>                              |
| Start operations                                      | Mid 2019                                         |

Roelof de Jong | 4MOST

### Wide-field corrector can be inserted into VISTA like IR camera











IoA Cambridge, King, Parry, Sun, et al.

VISTR\_86#RR2812\_8K7\_2-50F\_V34.2MX



### Echidna style positioner





- Large, overlapping patrol areas enables
  - sparse fibres for high resolution spectrograph
  - clustered fibres (e.g. galaxy clusters)
- Pitch ~10 mm, Patrol R: ~1.2x pitch
- Reconfiguration time <1 min
- Proven technology



## Fibre routing and spectrographs





High-Res Spectrograph: GEPI

Roelof

- Spectrographs gravitation invariant and outside dome environment
- Short fibre run (~10–15 m)
- Location High and Medium Resolution Spectrographs may be swapped (TBD)
- Fixed configuration spectrographs, high throughput with VPH gratings
- Two arm spectrographs, two 3k x 8k CCDs per arm









- 4MOST shall be able to obtain:
  - <u>Radial velocities</u> of ≤2 km/s accuracy and
    - Stellar parameters of <0.15 dex accuracy of any Gaia star
      - R~5000 spectra of 19.5 r-mag stars with S/N=10 per Ångström
  - Abundances of up to 15 chemical elements
    - R~20000 spectra of 15.5 r-mag stars with S/N=140 per Ångström
  - <u>Redshifts</u> of AGN and galaxies (also in clusters)
    - R~500 spectra of 22 r-mag targets with S/N=5 with >3 targets in ∅=2'
- In a 5 year survey 4MOST shall obtain:
  - 20 (goal 30) million targets at R~5000
  - 2.0 (goal 3.0) million targets at R~20,000
  - 16,000 (goal 23,000) degree<sup>2</sup> area on the sky at least two times

# How are we going to run 4MOST?



- 4MOST program defined by *Public Surveys* of 5 years
- Surveys will be defined by *Consortium* and *Community*
- All Surveys will run in parallel
  - Surveys share fibres per exposure for increased efficiency
- Key Surveys will define observing strategy
  - Millions of targests all sky
- Add-on Surveys for smaller surveys
  - Small fraction fibers all sky
  - Dedicated small area



# How are we going to run 4MOST?



- Consortium Surveys will ensure whole hemisphere covered with at least ~120 minutes total exposure time
- Each exposure 20 minutes, repeats possible
- Total exposures times per target between 20 and 120 min (and more) possible
- Areas with more targets visited more than 120 min





AIP

### Main science drivers



Galactic Archeology Gaia follow-up

High-energy sky eROSITA follow-up

Cosmology and galaxy evolution **Euclid** complement LSST/SKA (and other all-sky surveys)



## Design Reference Surveys



- Milky Way halo R>5000 (~2M objects
  - Chemo-dynamics streams
- Milky Way halo R>20,000 (~ 0.2M objects)
  - Chemical evolution of accreted components
- Milky Way disks/bulge R>5000 (~10M objects)
  - Chemo-dynamics of bulge/disks
- Milky Way disks/bulge R>20,000 (~1.5M objects)
  - Chemical evolution in situ components
- eROSITA galaxy clusters (~50,000 clusters, ~2.5M objects)
  - Dark Energy and galaxy evolution
- eROSITA AGN (~1M objects)
  - Evolution of AGN and the connection to their host galaxies
- Extra-galactic/BAO survey (~10M objects)
  - Luminous red and blue galaxies survey

Roelof de Jong | 4MOST



## Gaia needs spectroscopic follow-up to achieve its full potential



4MOST extents the

in the blue!

Gaia volume by 1000x

in the red and 1 million

Cover the bulge/halo

interaction and the

Magellanic Clouds





# Gaia astrometric detections

 Accurate radial velocities of Gaia will cover only Solar vicinity



Roelof de Jong | 4MOST

# Near-field cosmology with Milky Way chemo-dynamics

- Determine the Milky Way 3D potential to ~100kpc
- Mass spectrum of Dark Matter subhalos by the kinematic imprint on cold streams
- Measure the effect of baryons:
  - has there been adiabatic contraction?
  - is there a disk-like DM component?
- Chemical abundance substructure Milky
  Way halo
- Chemical abundances of very first stars
- Requirements for |b|>25°:
  - ~2M objects at R~5000 to  $m_V$ =20
  - ~0.2M objects at R~20,000 to m<sub>V</sub>=16





Roelof de Jong | 4MOST

# Dissect the Assembly history of the Milky Way bulge and disks



- Chemo-dynamical formation history of the bulge
  - how much is a classical merger remnant versus disk migration
- Formation mechanisms of the thickened disk (in situ formation, heating, accretion, migration, etc.)
- Quantify the importance secular evolution resonances, radial migration in the disks
- Early chemical evolution in bulge/disk (rare stars!)
- Requirements (all sky):
  - ~10M objects at R~5000 to m<sub>v</sub>=20
  - ~2M objects at R~20,000 to  $m_V$ =16



# Milky way bar creates moving groups in velocity distribution





# Study global structure and abundance gradients with faint Giants sample





- Due to the complexity of asymmetries expected, such as multiple spiral patterns, we need to survey the entire disk
- Strong variation in the migration efficiency expected with galactic radius
- Mergers create thick disks flares and thus we need to know the thick disk scale-height as a function of Galactic radius





- German Russian mission
- 0.3-4.5 keV, beam ~25"
- 8x all sky survey (4 year) + 3 years pointed observations
- Sky divided in two, German and Russian half
- Launch 2014
- Mission goals:
  - Dark Matter and Energy, growth of structure
  - X-ray detection of 100000 galaxy clusters
  - X-ray detection of 3 million point sources (AGN and Galactic)

Merloni talk Thursday





## eROSITA needs spectroscopic follow-up to reach its full potential



- X-ray selected galaxy clusters:
  - Competitive cosmological constraints using both growth rate of most massive over-densities and topology of large scale structure
  - Calibrate the  $L_X$  M relation to z~0.8 using cluster velocity dispersions
  - Evolution of galaxies in dense environments
  - Requirements:
    - R~500, redshifts to z~1 @ r~22 mag
- X-ray selected AGN:
  - Cosmology from large scale structure formation
  - Evolution of active galaxies up to z=5
  - Galaxy–Black Hole co-evolution relations to z=3
  - Properties of gas around AGN
  - Requirements:
    - R~3000, emission line redshifts to z=5



## Cosmological constraints by obtaining redshifts and velocity dispersions of galaxy clusters





- Using both cluster abundance and clustering, but no additional constraints
- Blue: no redshifts
- Red: with redshifts
- This is for 8000 clusters, goal for 4MOST is 50,000 clusters







- Dedicated spectroscopic survey facility
- Full, continues optical wavelength coverage
- All-sky coverage
- High multi-plex
- Power of 4m-class telescope exposing several hours

4MOST enables high quality statistical surveys of 10<sup>3</sup> to 10<sup>7</sup> objects, both all-sky and deep

## Other Science feasible with thousand to million object surveys



- Follow-up of LSST and Euclid transients
- Support Euclid photometric redshift calibrations
  - (but not to 99.5% completeness at I=24.5)
- Star formation history of the Milky Way from 100,000 White Dwarfs
- Ages of astro-seismology objects from e.g. CoRoT, Kepler
- Nature of peculiar variable stars discovered by Gaia, LSST, Euclid
- High resolution spectroscopy survey of Open Clusters
- Radial velocities time series of low mass binary systems
- Galaxy evolution from redshift surveys to z~1.5
- Nature of radio galaxies from SKA
- Insert your idea here

AIP

### Simulate throughput, fibre assignment, survey strategy and verify total survey quality

urvey Progress after night number: 0000



ong | 4MOST

GEPI, Paris, Sartoretti et al. IoA, Cambridge, Gonzalez-Solares et al.

## Large Area Spectroscopic Surveys Science with 4MOST Workshop



### • Program:

- 4MOST facility capabilities
- Galactic, extra-galactic, cosmology science
- Discussion of Consortium and Community science
- 13-15 November 2012 at AIP, Potsdam
- Registration at workshop.4most.eu

by Nov 1



#### Program

#### Session 1: 4MOST and spectroscopic surveys

- 4MOST instrument, technical capabilities
- Design Reference Surveys, survey strategies, and operational modes
- 4MOST Facility Simulator
- WEAVE and options for all-sky surveys
- Experience from RAVE, SDSS, Gaia-ESO, GAMA
- Discussion

#### Session 2: Galactic system surveys

- 4MOST Milky Way Halo & stellar streams Design Reference Surveys
- 4MOST Milky Way Disk, Bulge & Bar Design Reference Surveys
- Surveys (e.g., Gaia, VISTA, VST)
- Other Stellar Populations (White Dwarfs, X-ray luminous, variables, transients, Planetary Nebula, Open Clusters)
- Nearby galaxies (LMC, SMC)
- Discussion

#### Session 3: Extra-galactic and cosmology surveys

- 4MOST eROSITA AGN and Galaxy Clusters Design Reference Surveys
- 4MOST Large Scale Structure and Cosmology Design Reference Surveys
- Surveys (e.g., Euclid, VISTA, VST, DES, ASKAP, MeerKAT)
- Galaxy populations and their evolution (radio, sub-mm, IR, optical, UV, X-ray)
- Transients (supernovae and GRBs)
- · Discussion

Roelof



## Conceptual Design Study for ESO



- Now: Conceptual Design study, completed by Feb 2013
- Selection: 4MOST/MOONS decided ~May 2013
- Goal: start all-sky *public* (consortium & community) surveys 2019
- Telescope: VISTA, 4m-class telescope
- Science: space mission follow-up: Gaia, eROSITA, Euclid
- Data: yearly public data releases with higher level data products
- Current specs:
  - Very high multiplex: ~2400 fibers
  - Full optical wavelength coverage: 390-950 nm
  - Large field-of-view: ∅=2.6°
- 4MOST provides in a 5 year, all-hemisphere survey
  - >20 ×10<sup>6</sup> spectra @ R~5000 to  $m_V$ ~20 mag at S/N=20
  - > 1 × 10<sup>6</sup> spectra @ R~20,000 to  $m_V$ ~16 mag at S/N=50
  - Your input welcome at this stage!