THE GALACTIC BULGE SURVEY MULTI-WAVELENGTH OBSERVATIONS -

Manuel Torres (SRON) Jonker et al. (2011,ApJS,194,18)

Forensic Team:

P. Jonker^{1,2,3}, C. Bassa^{1,2,4}, G. Nelemans²,
D. Steeghs^{3,5}, T. Maccarone⁶, R. Hynes⁷,
S. Greiss⁵, J. Clem⁷, A. Dieball⁶, V. Mikles⁷, C. Britt⁷, L. Gossen⁷, A. Collazzi⁷,
R. Wijnands⁸, J. In't Zand¹, M. Méndez⁹,
N. Rea¹⁰, E. Kuulkers¹¹, E. Ratti¹, L. van Haaften², C. Heinke¹², F. Özel¹³, P. Groot², and F. Verbunt^{1,14}

 ¹ SRON, ² Radboud Univ. Nijmegen, ³ Harvard-Smithsonian Center for Astrophysics,
 ⁴ Jodrell Bank Centre for Astrophysics, Univ. of Manchester, ⁵ Univ. of Warwick,
 ⁶ Univ. of Southampton, ⁷ Louisiana State University, ⁸ Astronomical Institute "Anton Pannekoek," ⁹ Kapteyn Astronomical Institute, Univ. of Groningen, ¹⁰ CSIC, ¹¹ ISOC, ESA/ ESAC, ¹² Univ. of Alberta, ¹³ Steward Observatory, Univ. of Arizona,
 ¹⁴ Astronomical Institute, Utrecht University.

X-ray binary drawing

Census of Low-mass X-ray binaries:

THE POPULATION OF LOW-MASS X-RAY BINARIES IN THE GALAXY.								
Primary	Type	Number	Fraction					
Neutron Star	Persistent	46	28%					
Neutron Star	Transient	39	23%					
Confirmed BH	Persistent	0	0%					
Confirmed BH	Transient	16	9%					
BH Candidate	Persistent	2	1%					
BH Candidate	Transient	30	18%					
Unidentified	Persistent	7	4%					
Unidentified	Transient	3	2%					
Little Information	Persistent	17	11%					
Little Information	Transient	7	4%					

Total transients: 95

X-ray transients: Discovery.

Subjects: X-ray, Gamma Ray, Transient

During quiescence, the absorption lines of the companion star are visible and dynamical constraints on the mass of both stars can be determined.

Radial Velocity Curve fit:

$$V = \gamma + K_2 \sin\left[\frac{2\pi}{P_{orb}}(t - T_0)\right]$$

Mass function:

$$f(M) = \frac{K_2^3 P_{orb}}{2\pi G} = \frac{M_1 \sin^3 i}{(1+q)^2}, q = \frac{M_2}{M_1}$$

The GBS goals:

• Find (eclipsing) low-mass X-ray binaries in quiescence.

Model independent mass measurements black-hole formation and neutron star Equation of State.

Constraining common envelope evolution via number counts.

Cataclysmic variables and ultra-compact low-mass X-ray binaries.

• Spatial distribution of LMXBs in the Bulge.

Galactic Structure and formation.

The GBS area:

The GBS predictions and strategy:

Predicted number of nonmagnetic CVs, intermediate polars and quiescent LMXBs in the GBS area in function of source X-ray flux

Survey upper limit: (1-3)e-14 erg/s/cmr2

More GBS predictions:

(I)	(II)	(III)	(IV)	(V)	(VI)	(VII)	(VIII)	(IX)	(X)
LMXB	10 ³⁵	Hard	0	0	140	6	7	7	7
qLMXB	10 ³³	BB	5	2	10000	120	86	221	532
UCXB	10 ³⁴	Hard	4	0	1000	32	3	56	58
qUCXB	10 ³²	Hard	10	0	10000	1	0	8	605
CV (non mag.)	10 ³¹	Brems	7.5	0	2×10^{-5}	62	61	62	1.4×10^{6}
CV (IP)	10 ³²	Brems	8.5	0	1.5×10^{-6}	152	5	525	7.7×10^{4}
RS CVn	10 ³¹	Hard	2.5	1	1 × 10 ⁻⁴	596	596	596	1.3×10^6
W UMa	5×10^{30}	Hard	4.5	2	7.5×10^{-5}	160	160	160	2.3×10^6
Be X-ray binaries	10 ³⁴	Hard	0	0	500	9	9	10	10
Total						1142		1648	

I: Source Type. II: Lx (eg/s) III: X-ray color IV: i-band absolute mag V: (I-K)o VI: space density VII: GBS sources with Xray + optical counterparts. VIII: sources with X-ray + K-band counterparts. XIX: sources with X-ray counternant only

A multi-wavelength project!

• X-ray survey sensitive to faint sources and excellent position accuracy. Complete in 2012. 1640 X-ray sources

A multi-wavelength project!

- X-ray survey sensitive to faint sources and excellent position accuracy.
 Complete in 2012. 1640 X-ray sources.
- Optical (Blanco) and infrared (VVV) PHOTOMETRIC survey.

Observations and astrometry complete. Absolute calibration on-going.

A multi-wavelength project!

X-ray survey sensitive to faint sources and excellent position accuracy.
 Complete in 2012. 1640 X-ray sources.

- Optical (Blanco) and infrared (VVV) PHOTOMETRIC survey.
 Observations and astrometry complete. Absolute calibration <u>on-going.</u>
- Optical SPECTROSCOPIC survey.

On-going: VIMOS, FORS, X–SHOOTER (VLT), EFOSC2 (NTT), GMOS (Gemini), Goodman (SOAR)

- UV Coverage with GALEX. Complete 2011.
- Radio coverage with EVLA. Approved 2012.

A variability project!

Optical (Blanco) and infrared (VVV) VARIABILITY survey.
 Optical complete. Analysis on-going. More than 120 optical variables.

• X-ray and UV VARIABILITY with Swift. Finished.

First results from shallow public surveys:

- Identification of radio counterparts in the NVSS catalogue: 12 sources.
- Tycho-2 counterparts + ASAS variability: 60
- Optical Gravitational Lensing Experiment (OGLE) variables: 209

First results from optical spectroscopy:

- 30 secure accreting X-ray binaries. Around 70 Halpha emitting sources.
- First dynamical study. Confirmed CV.

IS IT ALL ABOUT EMISSION LINE OBJECTS?

SDSS J102347.6+003841

SDSS J102347.6+003841

