Exploiting multi-wavelength surveys for compact object science

Sandra Greiss¹, Boris Gänsicke¹, Danny Steeghs¹, GBS/EGAPS collaborations²

> ¹The University of Warwick ² Netherlands, UK, Spain, USA, Chile

> > October 16, 2012

6 VPHAS+

Motivation

- WDs are a fossil imprint of the galactic star formation history
- Accreting WDs are progenitors of Type Ia SNe
- NSs and stellar-mass BHs are remnants of Type II SNe
- XRBs formation and evolution + CE phases are not well understood
- Stellar-mass BHs are an important benchmarks to supermassive BHs at the core of galaxies
- Compact binaries are also gravitational sources

How can we find them?

Multi-wavelength surveys

Survey	Filters	Area
Galactic Bulge Survey (GBS)	X-ray $+$ optical $\mathit{riH}lpha$	12 deg ²
VVV	ZYJHK _s	520 deg ²
IPHAS and UVEX	UgriHlpha	1800 deg ²
VPHAS+	ugriH $lpha$	2000 deg^2
<i>Kepler</i> -INT Survey (KIS)	UgriHlpha	116 deg^2

GBS (Jonker et al.)

- \bullet Shallow X-ray survey of 2 \times 6 deg^2 strips in the bulge
- Chandra observations detected 1658 X-ray sources
- Main goals: determine accurate masses of rare XRBs, study binary formation, select binary candidates for optical spectroscopy (see M. Torres' talk)
- Optical and variability follow-up surveys

S. Greiss (The University of Warwick) Surveys worksho

VVV (Minniti et al.)

- Main goal: construct a 3-D map of the surveyed region by using distance indicators
- Total area covered: 520 deg²
- Observations: service mode using VIRCAM on VISTA
- Filters: ZYJHKs
- \bullet VVV overlaps with GBS \Rightarrow exploited for NIR data of GBS sources

Cross-matching GBS and VVV

- ${\scriptstyle \bullet}$ Search for JHK $_{s}$ matches in VVV within 5" radius
- Band-merge VVV catalogues
- GBS has 1658 X-ray sources

Survey	J	Н	K_s	JHK_s
2MASS	1094	1094	1094	1094
UKIDSS GPS	796	796	796	796
VVV	1647	1650	1650	1644

VPHAS+ (Drew et al.)

- 2000 deg²
- Filters used: u, g, r, i, H α
- Will also overlap with GBS and VVV ⇒ disentangle effect of reddening

The *Kepler*-INT Survey (KIS, Greiss et al. 2012) http://www.astro.warwick.ac.uk/research/kis

HR diagram by Jørgen Christensen-Dalsgaard.

Kepler power spectrum of second ZZ Ceti discovered

Conclusions

- We use VVV to search for the counterparts of 1658 X-ray sources in GBS.
- VPHAS+ also overlaps with GBS and will provide information on the NIR counterparts to the X-ray sources.
- Multi-wavelength surveys can be used to develop automated searches for compact objects using combinations of colours (IPHAS, UVEX, KIS, VPHAS, VVV).