

Data mining for reference objects to test model atmospheres of red giant stars

W. Nowotny¹, B. Aringer¹, K. Eriksson², H. P.Gail³, L. Girardi⁴, S. Höfner², P. Marigo⁵, A. Mayer¹

¹ Department of Astrophysics, University of Vienna (Austria), ² Department of Physics and Astronomy, Uppsala University (Sweden), ³ Institute for Theoretical Astrophysics, University of Heidelberg (Germany), ⁴ INAF – Padova Astronomical Observatory (Italy), ⁵ Department of Astronomy, University of Padova (Italy)

1. General approach

- · based on different types of models for the outer layers of evolved red giants detailed radiative transfer is solved
- outcome = synthetic spectra and calibrated synthetic photometry in standard Johnson-Cousins-Glass broad-band filters
- (cf. Girardi et al. 2002, Aringer et al. 2009, Nowotny et al. 2011)

- · comparison of modelling results with various observational data from the visual to the near-IR with two major aims:
 - testing if models describe the observed targets adequately
 - interpreting objects and their host stellar systems by applying the models

Survey data compiled from various sources

observational data from publicly available (mostly) photometric surveys; post-processing (dereddening, distance moduli, filter conversions, etc.) applied;

• Galactic Bulge population: → Figs.1+2c

field of Δα x Δδ = 0.5°x1° towards I

single-epoch JHK photometry from 2MASS point-source catalog (Cutri et al. 2003). mean VI magnitudes from OGLE averaged over time-series (Udalski et al. 2002); O(104...105) objects

 sample of Galactic Bulge Miras from Groenewegen et al. (2005): → Fig.1 1619 M-type Miras in the bulge of the Milky Way

identified by analysing photometric variations (I-band) provided by OGLE-II survey; cross-correlation with 2MASS and OGLE photometric maps → mean VIJHK mags

• sample of galactic C-type Miras from Whitelock et al. (2006): \rightarrow Fig.2 time-series JHKL photometry for a sample of field LPVs \rightarrow lightcurves, periods P, amplitudes ΔK

mean magnitudes dereddened for interstellar extinction;

estimates for other quanitites as e.g. mass-loss rates, mbol, distance moduli (m-M) • variable stars in the LMC from Ita et al. (2004): \rightarrow Fig.2d

period estimates based on analysed OGLE lightcurves and JHK photometry

• several others (AAVSO lightcurves, ISO spectra, Spitzer, etc.) \rightarrow e.g. Fig.3

> Set of C-rich dynamical models compared with observational data adopted from the literature mainly to the sample of field C-type Miras from Whitelock et al. (2006; W06). The empirical relation between MLR and (*J*–*K*) adopted from Gullieuszik et al. (2012; G12) is shown in the upper left panel. The *K*-log(*P*) diagram contains LMC variables from Ita et al. (2004; I04) and the known *P*-*L*-relations for LPVs as fitted by the same authors. Both were shifted to an absolute scale by assuming a distance modulus of (*m*–*M*)=18.5^{mag} for the LMC.

3. Hydrostatic model atmosphere

• grid of hydrostatic (i.e. dust-free) COMARCS model atmospheres for O-rich (Aringer et al., in prep.) and C-rich chemistry (Aringer et al. 2009)

· combined with evolutionary tracks from synthetic evolutionary models (Marigo et al. 2007, 2008);

example for a typical star $(1M_{\odot}, Z_{\odot})$ along the **RGB** and **AGB** \rightarrow Fig.1; various other tracks for α -enhanced bulge abundances (Bensby et al. 2011) calculated, interpolation scheme about to be implemented

Dynamic model atmospheres

 models simulating the scenario of pulsation-enhanced dust-driven winds for mass-losing long-period variables

(cf. Höfner et al. 2003, Mattsson et al. 2010, Nowotny et al. 2010, 2011)

 consistent description from the deep, dust-free photosphere (dominated by the pulsation of the stellar interior) out to the dust-forming layers and beyond to the stellar wind region (characterised by a cool, steady outflow containig dust grains)

 mainly for LPVs with C-rich atmospheric chemistry (driving mechanism evident); [models for O-rich objects recently investigated by Höfner 2008, Bladh et al. 2012]

• Nowotny et al. (A&A, submitted): \rightarrow Fig.2 aim = reproducing the diverse photometric properties of C-rich Miras, esp. of the comprehensive sample of well-characterised objects from Whitelock et al. (2006)

 set of five representative models with varying parameters (L, T_{eff}, C/O, P, Δm_{bc} mass loss rate,...); comparison of mean photometry (i.e. average over light cycles)

 models are able to reproduce the observable properties (absolute magnitudes, NIR colour indices, photometric amplitudes ΔK , mass-loss rates, etc.) and allow to e the observed sequence of C-type Miras with increasing mass-loss being the most significant effect along the sequence (circumstellar reddening)

Stationary wind models

 models for the dusty outflows of AGB stars (beyond ≈2R_{*}) as described in Ferrarotti & Gail (2006), incl. recent improvements of the code (Gail et al., in prep.)

 very detailed mineralogy including various relevant dust species: olivines (Mg,Fe)₂SiO₄, pyroxenes (Mg,Fe)SiO₃, quartz SiO₂, iron, magnesio-wustite (Mg,Fe)O, alumina Al₂O₃, spinel MgAl₂O₄, amorphous C, SiC, MgS, etc.

COMARCS model atmospheres combined with wind models to simulate the

aim: interpreting characteristics of the Galactic Bulge by using synthetic CM simulated with the population synthesis code TRILEGAL (Girardi et al. 2005)

Fig. 1:

Colour-magnitude diagrams of the Galactic Bulge (Baade's window) for different filter combinations based on 2MASS and OGLE data. Overplotted are the Miras identified by Groenewegen et al. (2005) across the bulge as well as the evolutionary track for a solarlike star (colour-coded are and /

• Fig. 3: Spectral energy distribution of the Mira R Aqr as determined by survey data adopted from different sources (see legend). Overplotted is the synthetic spectrum reproducing the global SED as well as the characteristic emission features at 10 and 18µm due to silicate dust grains in the stellar wind. 140

in the second second

30

and the

Acknowledgements:

- 10. 10

References:

Aringer et al. 2009, A&A, 503, 913

Bladh et al., A&A, 2012, in press (arXiv 1209.2112) Bensby et al. 2011, A&A, 533, A134

This research is funded by the Austrian Science Fund (FWF): P21988-N16, P23006. Sincere thanks are given to M.A.T. Groenewegen and J.A.D.L. Blommaert for providing mean OGLE VI magnitudes for the Galactic Bulge Miras

Baade's Window to the Core of the Milky Way

1.10

POSS1 and POSS2 Plates from the STScI Digitized Sky Processed into Color Image by Noel