Tests of novel wavefront reconstructors on sky with CANARY

Urban Bitenc, CfAI, Durham, UK

Real Time Control for Adaptive Optics ESO, Garching, 4th - 5th Dec 2012

OUTLOOK

- RECONSTRUCTORS:
 - MVM
 - CuRe
 - DiCuRe
- WHT, CANARY, DARC
- MEASUREMENTS in 2012
- PLANS
- CONCLUSION

MVM

- obtain interaction matrix
- invert to get command matrix
- num. actuators × 2*num. subaps ==> N²
- too slow for ELT EPICS

• investigate alternative solutions

Cumulative Reconstruction

- Talk from M. Rosensteiner
- direct algebraic reconstruction
- "integrate" gradients to get chains of WaveFront values
- align the chains using a perpendicular chain obtained from average gradients

Cumulative Reconstruction

- Result: WaveFront values in the middle of subaperture sides
- What one needs: values at subaperture corners
- Estimate it from the four surrounding points and *averaged* gradients
 - Loss of high spatial frequencies

U. Bitenc: Novel WF reconstructors on sky

Diagonal CuRe

- Alternative approach (being developed in Durham):
 - (1) rotate gradients
 - (2) integrate diagonally

Diagonal CuRe

- To align the chains, require:
 - same value on subaperture corners
 AND
 - same value in the middle of the subapertures
- Ao + Bc = 0
 - o: vector of offsets (unknowns)
 - c: vector of chain elements
- Still in the development phase mids

Mapping matrix

- CuRe/DiCuRe result: WF values at subaperture corners
- What you need: values at DM actuators positions
- Subaperture corners to actuators mapping matrix:

(1) run CuRe/DiCuRe over columns of the interaction matrix => matrix A
(2) invert matrix A ==> "mapping" matrix

(3) to obtain actuator voltages, multiply the (Di)CuRe output vector with the mapping matrix.

- Computationally intensive: N²
 - make it sparse by setting 70%, 80%, 90% of elements to 0

• Alternative: find the actuator positions by fitting, then interpolate

MVM vs. CuRe and DiCuRe

- Number of operations required:
 - MVM: 2*N²
 - CuRe: 12*N
 - DiCuRe: 20*N, with noise reduction $N^{3/2}$
- For the presented measurements the speed was not measured.

WHT:

William Herschel Telescope ORM, La Palma, Canary Islands

CANARY:

- An on-sky MOAO
 demonstrator
- For these tests:
 - SCAO mode, 7x7 subapertures, 36 illuminated
 - closed loop
 - used the

telescope simulator

DARC: Durham AO RTC

- CANARY uses DARC for real-time control
- Modular: to implement CuRe or DiCuRe, no changes to DARC needed, just provide the new reconstruction module
- This implementation of CuRe and DiCuRe:
 - no parallelisation
 - reconstruction begins when all the slopes are available

September and October 2012 runs

- September 2012:
 - CuRe and DiCuRe tests on bench and on sky (bad seeing)
 - both work stably in a closed loop
- October 2012:
 - CuRe unchanged
 - DiCuRe enhanced, but introduced a bug causing instability.
 - Bench test and on sky (excellent seeing)

Bench tests

• Test on the bench, gain = 0.3

Reconstructor	Measured Strehl ratios	average Strehl r.
MVM	0.22, 0.22, 0.22, 0.22, 0.22	0.220
DiCuRe	0.21, 0.22, 0.21, 0.22, 0.21	0.214
CuRe	0.23, 0.24, 0.22, 0.23, 0.24	0.232

• Test sparsity of the "mapping matrix" (subaperture corners to actuators):

DiCuRe (different conditions then the table above):

-	-
Sparsity	Strehl
1.0	0.23
0.3	0.22
0.2	0.21
0.1	0.13

On sky test: faint star

• Strehl ratio vs. time

Recon- structor	Number of measured points	average Strehl ratio
MVM	12	0.168
DiCuRe	12	0.144
CuRe	12	0.175

- Why CuRe looks better than MVM?
 - command matrix for MVM non-optimal conditioning?
 - too low gain
- Why is DiCuRe worse than CuRe? Because under development:
 - chain alignment: two sets of chains, causing waffle
 - a bug

On sky test: bright star

Recon- structor	Number of measured points	average Strehl ratio
MVM	15	0.245
DiCuRe	15	0.226
CuRe	15	0.243

• Strehl ratio vs. time

On sky test - bright star

• r0 vs. time

• Strehl ratio vs. r0

Future plans

- Finalise DiCuRe
- Use Durham AO RTC with Durham AO Simulation Package:
 - further tests and optimisations of DiCuRe
 - CuRe and DiCuRe subaperture corners to actuators mapping:
 - sparsity of the mapping matrix
 - alternative methods (e.g. interpolation)

Summary

- CuRe and DiCuRe tested on the bench and on sky: run stably in a closed loop.
- DiCuRe still in the development phase.
- Strehl ratios:
 - CuRe comparable to MVM
 - DiCuRe 10-15% worse
- Timing: no attempts to compare the speed
- THANKS:
 - Matthias Rosensteiner, Andreas Obereder
 - Ali Bharmal, Alastair Basden, Tim Morris

