

A Modular Adaptive Vibrations Cancellation Scheme for SPARTA

L. Pettazzi, R. Muradore, E. Fedrigo, R. Clare ESO and University of Verona

Vibration rejection in AO

Vibration rejection in AO

╶ 〓 ▋▌ 🖾 ▙▖ #〓 ┿╾ ▋ ▋ 🚍 ▋ ▋ 🚍 🔮 🖽 👫 🕒

Adaptive and Modular

Why adaptive control?

- Attractive solution to reject perturbations with time-varying characteristics (Doelman et al. 2009, Beerer et al. 2012)
- Adaptive control for vibration rejection successfully applied in the context of stellar interferometry @ ESO telescopes (Di Lieto et al. 2008)

Why modular architecture?

- Easy to implement in existing control infrastructure
- Add-on functionality w.r.t. existing WF controller → no re-commissioning of existing controller needed
- Easily reconfigurable to different operational scenarios if required by the science case

Adaptive Vibration Cancellation (1/2)

- Modification of an algorithm proposed in Pigg et al. 2010
- Adaptive approach:
 - estimates online of the plant frequency response and the disturbance parameters no prior knowledge of plant dynamics required
 - generates appropriate control signal to suppress vibration

- Both estimation and CSG work recursively at loop rate
- Can be operated in parallel to existing WF controller

Adaptive Vibration Cancellation (2/2)

- Can be expanded including additional mechanisms to track on-line variations of vibration central frequency
- Different frequency tracking algorithms can be implemented (PLL/EKF): PLL best trade-off between computational complexity and performance
- AVC shares same philosophy (adaptive control) and fundamental structure (phase/amplitude estimator + PLL) with algorithm already tested on-sky @ Paranal
- Equivalent to two 7x7 full MVM per cycle/vibration/mode → in line with RTC capability of MACAO-RTC and SPARTA

____ ▋▌ 🔯 ▙▅ #▆ ┿━ ▋ ▋ 🚍 ▋ ▋ 🚍 🔮 💶 🗮 🛃 🐜 🖿

End-to-end Simulations

- ESO end-to-end tool OCTOPUS used to simulate addition & correction of vibrations
- GALACSI NFM LTAO simulated (4LGS + 1 NGS)

Parameter	Value (unit)	
Time steps	5000	
LGS sampling frequency	1000 Hz	
NGS sampling frequency	200 Hz	
LGS flux	80 photons/subaperture/frame	
NGS flux	150 photons/subaperture/frame	
LGS read noise	1e/pixel/frame	
NGS read noise	15e/pixel/frame	
Vibration 1 frequency	18 Hz (tip/tilt)	
Vibration 2 frequency	48 Hz (tip/tilt)	
Loop gain (of temporal integrator)	0.3	
Delay	3 frames (1 for WFS integration plus 2 extra delay)	
r _o	11.8 cm	
PSF wavelength	0.65 μm	

- GALACSI NFM LE Strehl @650nm for standard parameter set without vibrations = 0.073
- Strehls with "bad conditions" vibrations @ 18Hz and 48Hz in both tip and tilt modes as measured on NACO added are:

	Without Pigg-Bodson	With Pigg-Bodson
LE Strehl at 650nm	0.047	0.070
Relative Strehl at 650nm	0.64	0.96

Almost all of the Strehl loss due to vibrations is recovered with AVC

Simulation results – NGS PSDs

NGS slope PSDs (calculated from iterations 1000-5000)

In x direction (y direction is analogous)

Peaks at 18 & 48Hz almost entirely removed from NGS PSDs with AVC

__ || 図 |_ ;; + || = || _ 0 □ _ ;; : + || || ||

Implementation in SPARTA AOF

Implementation in SPARTA AOF

A modular adaptive vibration cancellation scheme for SPARTA | Dec. 2012

__ ▮▮ 🖾 ⊾ := +- ▮ ▮ 💻 ▮ 🛯 二 🖬 💶 := 🖬 🖽 💥 🛀

Alternative implementations regarding exec time

Typical AO loop control cycle

Update AVC @ computation time

Update AVC @ idle time (AVC one step ahead)

Alternative implementations regarding exec time

- F1=18Hz
- NGS loop @ 500Hz
- LGS loop @ 1kHz
- NGS measurements used to correct F1
- One additional sample delay included in the AVC path
- No additional information provided to the AVC
- No tuning modification performed
- AVC correction capability and convergence rate not affected by different implementation

▐▋▋◙┣▖▓▌┿▋▋▋▀▋▌▌▃▐▋▇▝▙▌▓▓▝▙

- Correction in case of bright star (integration time 500Hz)
- Two vibrations (AR2 driven by white noise) @ 18Hz and 48Hz

- Longer integration time required in case of faint stars
- NGS measurements contain poor information regarding high frequency vibration
- If vibration propagates consistently in both loops → LGS signals could be used instead

- Longer integration time required in case of faint stars
- NGS measurements contain poor information regarding high frequency vibration
- If vibration propagates consistently in both loops → LGS signals could be used instead $y_L^2 y_L^3 y_L^4$

A modular adaptive vibration cancellation scheme for SPARTA | Dec. 2012

- F1=18Hz and F2=48Hz
- NGS loop @ 100Hz
- LGS loop @ 1kHz
- NGS signal used to reject vibration @F1
- Averaged LGS signal used reject vibration @F2
- Good correction of F1
- Good correction of F2 (looking @ LGS measurements)
- Residual vibration @F2 still visible in NGS (LGS lower SNR)

Conclusions

- Advantages of AVC:
 - Can cope with time-varying perturbations
- Methodology successfully tested in simulation
 - exploiting high fidelity AO loop E2E simulator
 - dedicated simulator
- Easy implementation in SPARTA control infrastructure
- Modularity enables enhanced operational flexibility:
 - > Allows exploiting different measurement sources in different operational modes

- On-sky verification run on MACAO
 - Feasibility analysis: processing of MACAO real time data to assess available stroke vs. amplitude of vibration to reject
 - Implementation and testing in MACAO simulator
 - On-sky verification of the algorithm
- Implementation of AVC user-interface and consolidation of bootstrap phase procedure
- Implementation in SPARTA and subsequent laboratory performance verification in the framework of AOF testing activity (ASSIST)
- Implementation/test for NAOMI and GRAVITY.

____ ▋▌ 💁 ▙▅ #글 ┿╾ ▋▋ 🚍 ▋▋ 🗫 💷 ▋▋ 👫 🕒