

A Modular Adaptive Vibrations Cancellation Scheme for SPARTA Scheme SPARTA

L. Pettazzi, R. Muradore, E. Fedrigo, R. Clare ESO and University of Verona

Vibration rejection in AO

▀▌▌▌▀▀▕^{▖▏}▛▀[▗]▀▏▘▕▓▓▕▝▔ \bullet = + + +

Vibration rejection in AO

A modular adaptive vibration cancellation scheme for SPARTA | Dec. 2012

╻╻═ ╺╋═┨╶╋┊╠╬╬╣╺╹═

Adaptive and Modular

Why adaptive control?

- × Attractive solution to reject perturbations with time-varying characteristics (Doelman et al. 2009, Beerer et al. 2012)
- × Adaptive control for vibration rejection successfully applied in the context of stellar interferometry @ ESO telescopes (Di Lieto et al. 2008)

Why modular architecture?

- × Easy to implement in existing control infrastructure
- × Add-on functionality w.r.t. existing WF controller \rightarrow no re-commissioning of existing controller needed
- × Easily reconfigurable to different operational scenarios if required by the science case

-C⊐ II | — II | — ⊙ | ∞ - - + | ≫

Adaptive Vibration Cancellation (1/2)

- × Modification of an algorithm proposed in Pigg et al. 2010
- × Adaptive approach:
	- \triangleright estimates online of the plant frequency response and the disturbance parameters \rightarrow no prior knowledge of plant dynamics required
	- \triangleright generates appropriate control signal to suppress vibration

- × Both estimation and CSG work recursively at loop rate
- × \blacksquare Can be operated in parallel to existing WF controller

Adaptive Vibration Cancellation (2/2)

- П ■ Can be expanded including additional mechanisms to track on-line variations of vibration central frequency
- П Different frequency tracking algorithms can be implemented (PLL/EKF): PLL best trade-off between computational complexity and performance
- **AVC** shares same philosophy (adaptive control) and fundamental structure (phase/amplitude estimator + PLL) with algorithm already tested on-sky @ Paranal
- × **E** Equivalent to two 7x7 full MVM per cycle/vibration/mode \rightarrow in line with RTC capability of MACAO-RTC and SPARTA

End-to-end Simulations

- $\mathcal{L}_{\mathcal{A}}$ ESO end-to-end tool OCTOPUS used to simulate addition & correction of vibrations
- GALACSI NFM LTAO simulated (4LGS + 1 NGS)

- П ■ GALACSI NFM LE Strehl @650nm for standard parameter set without vibrations $= 0.073$
- Strehls with "bad conditions" vibrations @ 18Hz and 48Hz in both tip and tilt modes as measured on NACO added are: ____________

 \blacksquare Almost all of the Strehl loss due to vibrations is recovered with AVC П

Simulation results – NGS PSDs

П ■ NGS slope PSDs (calculated from iterations 1000-5000)

П In x direction (y direction is analogous)

П Peaks at 18 & 48Hz almost entirely removed from NGS PSDs with AVC

▖▌▅▐▗▌▊▐▅▊▊▐▅▅▊░▕▗▅▋▗▅▌▖▐▒▓

Implementation in SPARTA AOF

Implementation in SPARTA AOF

A modular adaptive vibration cancellation scheme for SPARTA | Dec. 2012

Alternative implementations regarding exec time

П Typical AO loop control cycle

П Update AVC @ computation time

Update AVC @ idle time (AVC one step ahead) П

Alternative implementations regarding exec time

- П $F1=18Hz$
- П NGS loop @ 500Hz
- П LGS loop @ 1kHz
- П NGS measurements used to correct F1
- П One additional sample delay included in the AVC path
- П No additional information provided to the AVC
- П No tuning modification performed
- × AVC correction capability and convergence rate not affected by different implementation

▖▐▅▐▅▐▐▐▆▆▊▋▊▅▅▌▓▊▊▅▊[▗]▅▌▌▙▐▓▓▏▝▃

Contract

- П ■ Correction in case of bright star (integration time 500Hz)
- П Two vibrations (AR2 driven by white noise) @ 18Hz and 48Hz

- П **E** Longer integration time required in case of faint stars
- П NGS measurements contain poor information regarding high frequency vibration
- $\mathcal{L}_{\mathcal{A}}$ **If vibration propagates consistently in both loops** \rightarrow **LGS signals could** be used instead

- П **E** Longer integration time required in case of faint stars
- П NGS measurements contain poor information regarding high frequency vibration
- **If vibration propagates consistently in both loops** \rightarrow **LGS signals could** $\mathcal{L}_{\mathcal{A}}$ be used instead y_L^2 y_L^3 y_L^4

╺╋═┨╶╋┊╠╩╬╩┊╹═

A modular adaptive vibration cancellation scheme for SPARTA | Dec. 2012

- П $F1=18Hz$ and $F2=48Hz$
- П NGS loop @ 100Hz
- П LGS loop @ 1kHz
- П NGS signal used to reject vibration @F1
- П Averaged LGS signal used reject vibration @F2
- П ■ Good correction of F1
- × Good correction of F2 (looking @ LGS measurements)
- × Residual vibration @F2 still visible in NGS (LGS lower SNR)

80 T L

Conclusions

- Advantages of AVC:
	- \triangleright Can cope with time-varying perturbations
- $\mathcal{L}_{\rm{max}}$ Methodology successfully tested in simulation
	- \triangleright exploiting high fidelity AO loop E2E simulator
	- \triangleright dedicated simulator
- П Easy implementation in SPARTA control infrastructure
- П Modularity enables enhanced operational flexibility:
	- Allows exploiting different measurement sources in different operational modes

- П On-sky verification run on MACAO
	- Feasibility analysis: processing of MACAO real time data to assess available stroke vs. amplitude of vibration to reject
	- \triangleright Implementation and testing in MACAO simulator
	- \triangleright On-sky verification of the algorithm
- П Implementation of AVC user-interface and consolidation of bootstrap phase procedure
- × Implementation in SPARTA and subsequent laboratory performance verification in the framework of AOF testing activity (ASSIST)
- П Implementation/test for NAOMI and GRAVITY.