Fast wavefront reconstruction with wavelet regularization for MCAO

Mykhaylo Yudytskiy

Joint work with Tapio Helin

December 5, 2012

Garching, Germany

 Ω

- An MCAO System
- Wavelet-based iterative method as an alternative to MVM
- Numerics: speed estimates and quality results

K ロ ⊁ K 個 ▶ K ミ ▶ K

 QQ

Multi Conjugate Adaptive Optics (MCAO)

(Source: ESO)

MCAO system:

- several guide stars each with assigned WFS
- several deformable mirrors conjugated to different altitudes

Goal:

• good quality over field of view

 \leftarrow \Box \rightarrow \leftarrow \leftarrow \Box \rightarrow \leftarrow \leftarrow \rightarrow \leftarrow

 Ω

Multi Conjugate Adaptive Optics (MCAO)

(Source: ESO)

MCAO system:

- 6 LGS, 3 NGS (tip/tilt) each with assigned WFS
- 3 deformable mirrors conjugated to different altitudes

Goal:

• good quality over field of view

 \leftarrow \Box \rightarrow \leftarrow \leftarrow \Box \rightarrow \leftarrow \leftarrow \rightarrow \leftarrow

 Ω

MCAO – A Two Step Method

1. Atmospheric tomography

WFS measurements \rightarrow layers

4 ロ ▶ 4 何 ▶ 4

 299

MCAO – A Two Step Method

1. Atmospheric tomography

2. Determine mirror shapes

MCAO – A Two Step Method

1. Atmospheric tomography

2. Determine mirror shapes

Concept of the Approach

Standard approach:

- \bullet set up a system matrix \AA that maps DM commands to WFS measurements
- compute regularized inverse
- **•** perform matrix-vector multiplication

 \implies high computational cost

 Ω

 $A \Box B$ $A \Box B$ $A \Box B$

Concept of the Approach

Standard approach:

- \bullet set up a system matrix $\bf A$ that maps DM commands to WFS measurements
- compute regularized inverse
- **•** perform matrix-vector multiplication

 \implies high computational cost

Proposed approach:

- set up a sparse system (using wavelets)
- **•** use an iterative method (preconditioned conjugate gradient method)
- \implies reduce computational cost

 Ω

K ロ ト K 何 ト K ヨ ト .

Concept of the Approach – Wavelets

Wavelet-based approach:

Concept: Use wavelets to represent the turbulence layers

Wavelets are

- a way to represent and analyze signals
- used in JPEG compression

4日 8

Concept of the Approach – Wavelets

Wavelet-based approach:

Concept: Use wavelets to represent the turbulence layers

Wavelets are

- a way to represent and analyze signals
- used in JPEG compression

Why wavelets?

- good approximative properties
- **•** efficient representation of atmosphere statistics
- discrete wavelet transform (DWT) is $\mathcal{O}(n)$

Wavelets of choice: Daubechies 3

 \leftarrow \Box

Atmospheric Tomography Problem

To solve:

 Ω

 $\left\{ \begin{array}{ccc} \square & \rightarrow & \left\{ \bigcap \mathbb{R} \right\} & \rightarrow & \left\{ \bigcap \mathbb{R} \right\} & \rightarrow & \left\{ \bigcap \mathbb{R} \right\} & \end{array} \right.$

Atmospheric Tomography – Projection Operator

Atmospheric tomography operator:

layers \rightarrow WFS measurements

 $A = \Gamma P$

Atmospheric Tomography – Shack-Hartmann Operator

Shack-Hartmann operator:

incoming wavefront \rightarrow WFS measurements

$$
\Gamma_{\alpha_g} = \begin{bmatrix} \Gamma^x \\ \Gamma^y \end{bmatrix},
$$

\n
$$
(\Gamma^x \varphi)_i = \frac{1}{|\Omega_i|} \int_{\Omega_i} \frac{\partial \varphi(x, y)}{\partial x} d(x, y),
$$

\n
$$
(\Gamma^y \varphi)_i = \frac{1}{|\Omega_i|} \int_{\Omega_i} \frac{\partial \varphi(x, y)}{\partial y} d(x, y)
$$

(Source: Tokovinin)

Block Shack-Hartmann operator:

incoming wavefront in all directions \rightarrow WFS measurements of all sensors

$$
\Gamma \varphi = s \qquad \Gamma = \begin{bmatrix} \Gamma_{\alpha_1} & & & \\ & \Gamma_{\alpha_2} & & \\ & & \Gamma_{\alpha_3} \end{bmatrix}
$$

Turbulence Covariance Operator

Turbulence Covariance Operator:

layers \rightarrow layers

Kolmogorov power law for each layer:

$$
C_{\phi} = \begin{bmatrix} C_{\phi}^{(1)} & & \\ & C_{\phi}^{(2)} & \\ & & C_{\phi}^{(3)} \end{bmatrix},
$$

$$
C_{\phi}^{(\ell)} = c^{(\ell)} \mathcal{F}^{-1} M \mathcal{F}
$$

$$
(Mf)(\xi) = \xi^{-11/3} f(\xi)
$$

In wavelet domain:

- $\bullet \ \ C_{\phi} \rightsquigarrow C_{c}$
- \bullet C_c ... a diagonal matrix of weights w.r.t. wavelet coefficients

Sparse discretizations

- atmospheric tomography operator $A = \Gamma P$ in bilinear basis
- \bullet turbulence covariance operator C_ϕ^{-1} in *wavelet basis*
- couple via: DWT

We solve: statistics–regularized equation

$$
(WA^*C_{\eta}^{-1}AW^{-1} + \alpha C_c^{-1})c = WA^*C_{\eta}^{-1}s
$$
\ndiscrete wavelet
\ntamospheric
\ntransform $\mathcal{O}(n)$ tomography operator coefficients
\nbilinear basis
\n(sparse)

 \cap \cap

≮ロト ⊀何ト ⊀ミト

Discrete Wavelet Transform – Example

DWT for Daubechies $3 \leftrightarrow$ convolution with highpass, lowpass filters (6 numbers)

Discrete Wavelet Transform – Example

DWT for Daubechies $3 \leftrightarrow$ convolution with highpass, lowpass filters (6 numbers)

Discrete Wavelet Transform – Example

DWT for Daubechies $3 \leftrightarrow$ convolution with highpass, lowpass filters (6 numbers)

Preconditioned conjugate gradient method

Solve

$$
\underbrace{(WA^* C_\eta^{-1} A W^{-1} + \alpha C_c^{-1})}_{M} c = \underbrace{WA^* C_\eta^{-1} s}_{b}
$$

or

 $Mc = b$

using conjugate gradient (CG) method

Computational cost of CG \longrightarrow cost of applying M & "condition number" of M

 Ω

イロト イ母 トイヨト

Preconditioned conjugate gradient method

Reduce the condition number of M by preconditioning:

```
N^{-1}Mc = N^{-1}b
```
where N is such that

 \bullet $Nc = b$ is cheap to solve and

```
\bullet\; N\approx M
```
Examples of preconditioners:

- Jacobi: $N = diag(M) = diag(W A^* C_{\eta}^{-1} A W^{-1}) + \alpha C_c^{-1}$
- Multigrid: $N = M$ on coarser scale (fewer bilinear elements, wavelet scales)
	- N^{-1} ... exact solution or
	- N^{-1} ... a few steps of an iterative method

イロト イ押 トイヨ トイヨ)

MCAO Features

- 1. Laser guide stars:
	- **•** spot elongation
	- tip/tilt indetermination
	- **cone** effect
- 3. Pseudo-open loop control (POLC)

2. Reconstructing more layers than mirrors (fitting step)

メロトメ 倒下 メミトメ

WFS 1 \overline{WFS} 2 WFS 3

 299

Simulations in OCTOPUS

Configuration:

- Telescope aperture diameter: 42 m
- 6 laser guide stars (LGS)
	- \bullet 84×84 subapertures
- 3 natural guide stars (NGS)
	- 1 sensor with 2×2 subapertures
	- 2 sensors with 1×1 subapertures
- 3 DMs
	- at 0, 4000, 12,700 m
	- 9,296 active actuators

∢ ロ ▶ - ∢ 何 ▶ - ∢

Simulated data:

- OCTOPUS official simulation tool of ESO
- 9 atmospheric layers
- quality evaluated in 25 directions

 Ω

Number of floating point operations

wavelets 3-layers: discretization grid coincides with bilinear actuators of the mirrors

 Ω

イロト イ団ト イミト イ

Results in OCTOPUS: Quality

Low flux: LGS @ 50-500 photons/subap/frame, elongated spots NGS @ 500 photons/subap/frame

Results in OCTOPUS: Preconditioning

Low flux: LGS @ 100 photons/subap/frame, elongated spots NGS @ 500 photons/subap/frame

 Ω

Wavelet method

- CG-based
- **•** efficient representation of atmosphere statistics
- wavelet basis ←→ bilinear basis: discrete wavelet transform

Wavelet method: numerical results

- high reconstruction quality
- **•** promising speed estimates

Outlook

- RTC prototype
- **•** Parallelization
- Multigrid preconditioner

 Ω

K ロ ▶ K 何 ▶ K ヨ ▶ K