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Shack-Hartmann wavefront sensor

(source: Tokovinin)

SH WFS model:

sx[i] =
1

|Ωi|

∫
Ωi

∂φ

∂x
,

sy[i] =
1

|Ωi|

∫
Ωi

∂φ

∂y
.

measurements are averaged
gradients of the wavefront

Goal: Reconstruct the wavefront from the measurements of the Shack-Hartmann
wavefront senor
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The Cumulative Reconstructor idea

measurements in 1D:

si =

∫ ai+1

ai

∂φ

∂x
dx

and with

φ(ai+1)− φ(ai) =

∫ ai+1

ai

∂φ

∂x
dx

gives the iteration rule

φ(ai+1) = φ(ai) + si

fast and accurate reconstruction of the wavefront in 1D

Question: Can this be adapted to the 2D?
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Extension to 2D
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modified Hudgin geometry

• bilinear influence functions gives measurements
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• reconstruct chains on the midpoints
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• connect the mean values of the x chains to the mean chain of the orthogonal y
chains
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• bilinear interpolation onto the corner points

adaptation of the algorithm to general geometries possible
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The Cumulative Reconstructor - Graphical Representation
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Figure: Graphical representation of the CuRe for a 5x5 subaperture domain

not included: second part of computation for modified Hudgin geometry,
transition to Fried geometry
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Domain decomposition - fighting the noise propagation

Figure: Decomposition of the
domain for CuReD

decomposition of the domain to use the good
properties of CuRe at small apertures

divide the domain into subdomains Ωi

reconstruct the wavefront using CuRe on
the subdomains

connect these reconstructions at the
boundaries ∂Ωi

3 4

1 2

connect four parts at a time, hierarchically

d12 = ‖φ2(i, first)‖ − ‖φ1(i, last)‖,

and d34, d13, d24 respectively.
shift according to these differences
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Noise propagation CuReD

example residuals

decomposition level 0

decomposition level 4

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 100  1000  10000

pr
op

ag
at

io
n 

fa
ct

or

number of subapertures

Noise propagation for different aperture sizes

CuReD (0) 
CuReD (1) 
CuReD (2) 
CuReD (3) 
CuReD (4) 

Figure: noise propagation for CuRe, CuReD and FrIM vs.
number of subapertures
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Computational Complexity

• theoretical computational complexity: 20n

reconstruction of a 84x84 sensor (µs)
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• MVM time: 12ms

reconstruction of a 200x200 sensor (µs)
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• MVM time: 402ms
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Octopus - simulation example of a telescope
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Figure: Comparison of MVM and CuReD
vs. photon flux for a simulation of 1s

E-ELT sized telescope (42 m)

Simulation running at 1kHz

Shack-Hartmann wavefront sensor
with 84x84 subapertures

annular aperture, 28% central
obstruction

bilinear mirror according to Fried
geometry

simple temporal integrator control

φ(t+ 1) = φ(t) + g∆φ
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CuReD in the real world

Test on the HOT bench:

using the MATLAB prototype
setup of subaperture map for CuReD
derivation of the mirror misalignment from system matrix
interpolation step from the Fried geometry to the actuator positions of the
mirror
first system tests

Test within DARC:

C prototype used
run with a 7x7 SH sensor
first tests with wavefront-to-actuator map
on-sky tests promising
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28./29. September 2012: CuReD on Sky, Herschel Teleskop

Las Palmas, Canary Islands (Spain), Roque de los Muchachos (2344m)

4.2m mirror diameter

CuReD – tests performed by Durham University
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Misalignment estimation using CuReD

Real life: in a real system the wavefront sensor and the mirror are not
perfectly aligned

Problem: generic algorithms do not take the mirror misalignment into
account
quality is not as good as possible

Goal: incorporate the misalignment into the CuReD interpolation step

Idea: use the CuReD to estimate the mirror misalignment

Assumption: we have a (measured) interaction matrix
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Misalignment estimation algorithm

To estimate the misalignment of the mirror this algorithm is performed:

obtain the measurements for pushing a single actuator from the interaction
matrix

use the CuReD algorithm to reconstruct the wavefront from these
measurements

calculate the (weighted) center of gravity for the reconstruction

repeat these steps for all actuators

select a sample of “credible” actuators

obtain the misalignment parameters by minimization, e.g.

min
∑
i

√
(xci − (axi + dx))2 + (yci − (ayi + dy))2 (1)

to estimate the shift (dx, dy) and the scale a from the calculated actuator
positions xci , yci
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Calculated actuator positions – map

Map showing the
expected vs. the with
CuReD + CoG
calculated actuator
positions

blue: expected actuator
positions
red: calculated actuator
positions

“credible” actuator:
without boundary and
area at the spiders
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Misalignment estimation: CuReD vs. MVM

Comparison of the misalignment estimation with CuReD and the reconstruction
matrix (MVM)
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