
1

How many GPUs do we really
need ?

Arnaud Sevin, Damien Gratadour & Julien Brule
LESIA, Observatoire de Paris

2

Outline

๏ Possible GPU-based architectures

๏ GPU environment

๏ Measuring latency and jitter

๏ Problem scale

๏ Pure compute performance

๏ Jitter

๏ Future works

3

GPU-based architectures
๏ GPUs : accelerators / coprocessors = device in a host (CPU)

๏ Connection via PCIe lanes (x16 Gen3 :128 Gb/s)

๏ Several setups for full bandwidth

๏ Desktop : single socket (40 PCIe lanes) + 1/2 GPUs

๏ Workstation : dual-socket + 2/4 GPUs

๏ Cluster : proprietary dual-socket nodes (2-3 GPUs) + infiniband interconnect
(40Gb/s)

๏ Other setups throughput oriented

๏ PCIe switches behind IOH : up to 8 GPUs for a single IOH (shared bandwidth)

๏ Through IOH : 40Gb/s in & 32Gb/s out (measured on Fermi
with Gen2)

๏ New Intel X79 chipset (no IOH) up to 48Gb/s in & out
(measured on Kepler with Gen3)

4

GPU-based architectures
๏ NVIDIA, leader in GPGPU : CUDA architecture & toolkit

๏ Tesla Fermi : 16 Streaming Multiprocessor x 32 cores = 512 cuda cores

๏ Tesla Kepler K10 : 8 SM x 192 cores = 1536 cuda cores x 2 GPU chips
(+ on-board PCIe switch)

๏ Up to 6GB on board memory

๏ Stream processing

๏ Several kernel launch instances concurrently

๏ 2 copy engines : bi-directional. Asynchronous copy + compute overlap (hide
host-to-device / device-to-host memcopy latency + removes device memory
limitation)

๏ 1 compute engine queue + concurrent kernels : increase performance,
maximize GPU utilization for small kernels (Fermi up to 16 concurrent kernels)

๏ Get as close as possible to theoretical peak throughput : ~1 TFLOPS

5

GPU environment
๏ Choice of OS/kernel

๏ SL 6.3 64bits (2.6.32) / nvidia driver 304.54 (cuda5 drivers)

๏ Based on SL 6.3 (3.2.23-rt37) / nvidia driver 304.54 RT patched
 with Red Hat Enterprise MRG tools

๏ Multi-GPU : peer-to-peer

๏ Workstation : CUDA provides peer-to-peer communications between
GPUs on the same motherboard.

๏ Single IOH / single node : GPUdirect

๏ Limited impact on dual-IOH (30% in bandwidth)

๏ Multi(>2)-GPUs : MPI / openMP + CUDA

๏ MPI support for Unified Virtual Adressing (peer-to-peer)

๏ GPUdirect over infiniband (shared pinned memory from the host)

•

•

6

Measure latency & jitter
๏ NVIDIA profiling tools

๏ NVVP (graphical) / nvprof (command line) : profiling at the GPU
(device) level

๏ Better understand CPU-GPU interaction, identify bottlenecks or
concurrency opportunities

๏ Monitor multi-processor occupancy, optimize code

๏ TAU / PAPI / CUPTI

๏ TAU : Generic tools for heterogeneous systems : profiling at the
host level (kernel level profiling available)

๏ PAPI CUDA : provides access to hardware counters on NVIDIA GPUs.
Based on NVIDIA CUPTI the Cuda Performance Tools Interface.
Provide device level access

๏ Intrinsically intrusive but limited impact

7

Problem scale
๏ E-ELT : 40m telescope

๏ SCAO system : 80x80 subaps with 6x6 pixels

๏ ~ 0.25 Mpix per transfer (1Mb) => ~ 1Gb/s (1kHz)

๏ 10k slopes ~0.2Mb and 5k DM commands

๏ 10k x 5k command matrix : ~1.5Gb

๏ MVM : 163MFLOP => 163 GFLOPS (1kHz)

๏ Multiple WFS / multiple DMs / LGS

๏ MAORY : up to 6 LGS WFS with 80x80 subaps, 12x12 for LGS and 3 Dms

๏ Bandwidth requirement : ~15Gb/s (1kHz)

๏ Command matrix up to ~20Gb

๏ Throughput requirement (1kHz) for MVM : 1.5TFLOPs

8

Benchmarking
๏ NVIDIA Visual Profiler: profiling overhead

๏ Simulating the core
RTC process

...

...

0.1 0.175 150 0.1 0.179 82 0.1 0.1176 182 0.1 0.1202 187 0.1 0.1122 157 0.1 0.1178 200 0.1 0.1223 204 0.1 0.1154 199 ...
0.1 0.10.7 -0.2 0.1 0.11.2 0.1 0.1 0.1-1.7 -1.2 0.1 0.10.3 1.8 0.1 0.12.1 -0.3 0.1 0.1-0.9 0.1 0.1 0.10.4 1.4 0.1 0.12.0 0.3 ...
0.1 0.1-0.5 -0.3 0.1 0.1-1.2 0.9 0.1 0.12.3 -0.2 0.1 0.11.4 -0.1 0.1 0.1-0.8 -1.7 0.1 0.1-1.9 0.1 0.1 0.11.9 0.7 0.1 0.10.2 -2.1 ...

Subap Nphot

X centroids

Y centroids

Pixel data

Pixel data

cmat

0.1 0.1-0.5 -0.3 0.1 0.1-1.2 0.9 0.1 0.12.3 -0.2 0.1 0.11.4 -0.1 0.1 0.1-0.8 -1.7 0.1 0.1-1.9 0.1 0.1 0.11.9 0.7 0.1 0.10.2 -2.1 DM commands...

0.1 0.1-0.5 -0.3 0.1 0.1-1.2 0.9 0.1 0.12.3 -0.2 0.1 0.11.4 -0.1 0.1 0.1-0.8 -1.7 0.1 0.1-1.9 0.1 0.1 0.11.9 0.7 0.1 0.10.2 -2.1 DM commands...

CPU

GPU

CPU

9

Pure compute performance
๏ 80x80 (square pupil, no obstruction => upper limit),
6x6 pixels

๏ 1 GPU 4 streams
10ms

10

Pure compute performance
๏ 80x80 (square pupil, no obstruction => upper limit),
6x6 pixels

๏ 1 GPU 4 streams

๏ Good level of
concurrency
(memcopy latency
hidding + increased
performance)

๏ Exec. Time
dominated by
MVM

๏ Centroiding has high multi-processor occupancy

๏ Throughput limited (pixel data copy takes about 500µs)

11

Pure compute performance
๏ 80x80 (square pupil, no obstruction => upper limit),
6x6 pixels

๏ 1 GPU 8 streams

๏ Slight performance
gain (<2.602ms)

๏ Lower kernel
concurrency level
(load too small)

๏ Explicit synchronization
may be required

๏ Pixel copy takes longer
(smaller chunks,
sub-optimal) >1ms

12

Pure compute performance
๏ 80x80 (square pupil, no obstruction => upper limit),
6x6 pixels

๏ 1 GPU 16 streams

๏ Same performance

๏ Pixel copy is
dispatched over the
whole process

13

Pure compute performance
๏ 80x80 (square pupil, no obstruction => upper limit),
6x6 pixels

๏ 2 GPUs 4 streams

๏ Increased
throughput

๏ Pixel copy takes
~1ms

๏ Best trade-off

๏ >500 Hz with
profiling overheads

14

Pure compute performance
๏ 80x80 (square pupil, no obstruction => upper limit),
6x6 pixels

๏ 2 GPUs 8 streams

๏ Lower
performance

๏ bad concurrency

๏ Chunks too small

๏ Sub-optimal
(low occupancy)

15

Jitter
๏ Need for RT kernels

๏ SL6.3 without / with RT-kernel, patched NVIDIA drivers, CPU shielding
and affinity on HP SL390s motherboards (no RT scheduling)

๏ Dramatic reduction of jitter, slight throughput gain

๏ Throughput / jitter ensure real-time operations at > 500Hz for SCAO with
2 GPUs (square pupil, no obstruction)

SL6.3, Non real-time kernel SL6.3, real-time kernel

16

Jitter
๏ Impact of new Intel X79 chipset (PCIe lanes on the socket, no
IOH)

๏ Not bandwidth limited so limited gain in performance

๏ Large impact on the single GPU case (why ?)

๏ Lower jitter on dual GPU case

๏ Are CUDA 5.0 & NVIDIA driver fully compatible with this new chipset ?

With IOH (old generation) Without IOH (new generation)

17

Jitter
๏ Using Geforce cards (gamer oriented), to reduce cost

๏ 1Msample : about 1/2h operations at 600Hz

๏ SL6.3 with RT-kernel & options

๏ 2 GPUs (Geforce GTX 690, PCIe switch on board)

18

Jitter
๏ Using Geforce cards (gamer oriented), to reduce cost

๏ 1Msample : about 1/2h operations at 600Hz

๏ SL6.3 with RT-kernel & options

๏ 2 GPUs (Geforce GTX 690, PCIe switch on board)

19

Jitter
๏ Using Geforce cards (gamer oriented), to reduce cost

๏ Large jitter at all scale (several ms)

๏ Pure throughput is ok but jitter incompatible with RT operations

๏ Geforce ok for simulations but not compatible with RT

20

Jitter
๏ Using Geforce cards (gamer oriented), to reduce cost

๏ Using only one GPU gives lower throughput

๏ 2 GPUs : increased jitter on GeForce compensate gain in throughput
(not compatible with RT, no point to use 2 GPUs)

๏ Part of jitter (single GPU) may be due to hardware (X79 chipset)

21

The MAORY case
๏ MCAO with 6 LGS WFS 80x80 (baseline = 12x12 pixels) and 3 DMs

๏ 6 dual-GPU nodes: 1/WFS (cmd vector integrated out of the nodes)

๏ Close to 200Hz

22

Conclusions
๏ Throughput is there

๏ RT operations for SCAO 80x80 @>500Hz (2 GPUs)

๏ CUDA framework allows optimizations (N streams) and memcopy
latency hiding

๏ Means to reduce jitter

๏ Use of RT kernel with nvidia RT patch

๏ Use of professional Tesla boards (M2090, K10, K20, K20X, …)

๏ Long-run performance (including jitter) compatible with RT operations
on Tesla boards

๏ GeForce have similar throughput, but...

๏ Huge jitter (>2ms) → performance not stable

๏ OK for simulations but incompatible with RT

23

Future works
๏ Use host level (kernel level) for profiling:

๏ Absolute performance and jitter measurements

๏ Kernel module for data exchange

๏ The first step is to feed the GPU with a custom kernel module with
GPU direct compatibility

๏ Next the GPU can feed a second kernel module
(also GPU direct compatible)

๏ Accurate precision of the real jitter

๏ Acquisition interface through serial protocol

๏ Studies on MPI/RT

