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GPU-based architectures
๏ GPUs : accelerators / coprocessors = device in a host (CPU)

๏ Connection via PCIe lanes (x16 Gen3 :128 Gb/s) 

๏ Several setups for full bandwidth

๏ Desktop : single socket (40 PCIe lanes) + 1/2 GPUs

๏ Workstation : dual-socket + 2/4 GPUs 

๏ Cluster : proprietary dual-socket nodes (2-3 GPUs) + infiniband interconnect 
(40Gb/s)

๏ Other setups throughput oriented

๏ PCIe switches behind IOH : up to 8 GPUs for a single IOH (shared bandwidth)

๏ Through IOH : 40Gb/s in & 32Gb/s out (measured on Fermi 
with Gen2)

๏ New Intel X79 chipset  (no IOH) up to 48Gb/s in & out 
(measured on Kepler with Gen3)
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GPU-based architectures
๏ NVIDIA, leader in GPGPU : CUDA architecture & toolkit 

๏ Tesla Fermi : 16 Streaming Multiprocessor x 32 cores = 512 cuda cores

๏ Tesla Kepler K10 : 8 SM x 192 cores = 1536 cuda cores x 2 GPU chips 
(+ on-board PCIe switch)

๏ Up to 6GB on board memory

๏ Stream processing

๏ Several kernel launch instances concurrently

๏ 2 copy engines : bi-directional. Asynchronous copy + compute overlap (hide 
host-to-device / device-to-host memcopy latency + removes device memory 
limitation)

๏ 1 compute engine queue + concurrent kernels : increase performance, 
maximize GPU utilization for small kernels (Fermi up to 16 concurrent kernels) 

๏ Get as close as possible to theoretical peak throughput : ~1 TFLOPS
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GPU environment
๏ Choice of OS/kernel

๏ SL 6.3 64bits (2.6.32)  / nvidia driver 304.54 (cuda5 drivers)

๏ Based on SL 6.3 (3.2.23-rt37) / nvidia driver 304.54 RT patched
 with Red Hat Enterprise MRG tools

๏ Multi-GPU : peer-to-peer

๏ Workstation : CUDA provides peer-to-peer communications between 
GPUs on the same motherboard.

๏ Single IOH / single node : GPUdirect 

๏ Limited impact on dual-IOH (30% in bandwidth)

๏ Multi(>2)-GPUs : MPI / openMP + CUDA

๏ MPI support for Unified Virtual Adressing (peer-to-peer)

๏ GPUdirect over infiniband (shared pinned memory from the host)

•

•
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Measure latency & jitter
๏ NVIDIA profiling tools

๏ NVVP (graphical) / nvprof (command line) : profiling at the GPU 
(device) level

๏ Better understand CPU-GPU interaction, identify bottlenecks or 
concurrency opportunities

๏ Monitor multi-processor occupancy, optimize code

๏ TAU / PAPI / CUPTI

๏ TAU : Generic tools for heterogeneous systems : profiling at the 
host level (kernel level profiling available)

๏ PAPI CUDA : provides access to hardware counters on NVIDIA GPUs. 
Based on NVIDIA CUPTI the Cuda Performance Tools Interface. 
Provide device level access

๏ Intrinsically intrusive but limited impact
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Problem scale
๏ E-ELT : 40m telescope 

๏ SCAO system : 80x80 subaps with 6x6 pixels

๏ ~ 0.25 Mpix per transfer (1Mb) => ~ 1Gb/s (1kHz)

๏ 10k slopes ~0.2Mb and 5k DM commands

๏ 10k x 5k command matrix : ~1.5Gb 

๏ MVM : 163MFLOP => 163 GFLOPS (1kHz)

๏ Multiple WFS / multiple DMs / LGS

๏ MAORY : up to 6 LGS WFS with 80x80 subaps, 12x12 for LGS and 3 Dms

๏ Bandwidth requirement : ~15Gb/s (1kHz)

๏ Command matrix up to ~20Gb

๏ Throughput requirement  (1kHz) for MVM : 1.5TFLOPs
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Benchmarking
๏ NVIDIA Visual Profiler: profiling overhead

๏ Simulating the core
RTC process 

...

...
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Pure compute performance
๏ 80x80 (square pupil, no obstruction => upper limit), 
6x6 pixels

๏ 1 GPU 4 streams
10ms
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Pure compute performance
๏ 80x80 (square pupil, no obstruction => upper limit), 
6x6 pixels

๏ 1 GPU 4 streams

๏ Good level of
concurrency
(memcopy latency
hidding + increased
performance)                  

๏ Exec. Time
dominated by
MVM

๏ Centroiding has high multi-processor occupancy

๏ Throughput limited (pixel data copy takes about 500µs)
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Pure compute performance
๏ 80x80 (square pupil, no obstruction => upper limit), 
6x6 pixels

๏ 1 GPU 8 streams

๏ Slight performance 
gain (<2.602ms)

๏ Lower kernel
concurrency level
(load too small)

๏ Explicit synchronization
may be required

๏ Pixel copy takes longer
(smaller chunks, 
sub-optimal) >1ms
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Pure compute performance
๏ 80x80 (square pupil, no obstruction => upper limit), 
6x6 pixels

๏ 1 GPU 16 streams

๏ Same performance

๏ Pixel copy is
dispatched over the
whole process
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Pure compute performance
๏ 80x80 (square pupil, no obstruction => upper limit), 
6x6 pixels

๏ 2 GPUs 4 streams

๏ Increased
throughput

๏ Pixel copy takes
~1ms

๏ Best trade-off

๏ >500 Hz with
profiling overheads
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Pure compute performance
๏ 80x80 (square pupil, no obstruction => upper limit), 
6x6 pixels

๏ 2 GPUs 8 streams

๏ Lower  
performance

๏ bad concurrency

๏ Chunks too small

๏ Sub-optimal
(low occupancy)
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Jitter
๏ Need for RT kernels

๏ SL6.3 without / with RT-kernel, patched NVIDIA drivers, CPU shielding 
and affinity on HP SL390s motherboards (no RT scheduling)

๏ Dramatic reduction of jitter, slight throughput gain

๏ Throughput / jitter ensure real-time operations at > 500Hz for SCAO with 
2 GPUs (square pupil, no obstruction)

SL6.3, Non real-time kernel SL6.3, real-time kernel
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Jitter
๏ Impact of new Intel X79 chipset (PCIe lanes on the socket, no 
IOH)

๏ Not bandwidth limited so limited gain in performance

๏ Large impact on the single GPU case (why ?)

๏ Lower jitter on dual GPU case

๏ Are CUDA 5.0 & NVIDIA driver fully compatible with this new chipset ?

With IOH (old generation) Without IOH (new generation)
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Jitter
๏ Using Geforce cards (gamer oriented), to reduce cost

๏ 1Msample : about 1/2h operations at 600Hz

๏ SL6.3 with RT-kernel & options

๏ 2 GPUs (Geforce GTX 690, PCIe switch on board)  
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Jitter
๏ Using Geforce cards (gamer oriented), to reduce cost

๏ Large jitter at all scale (several ms)

๏ Pure throughput is ok but jitter incompatible with RT operations

๏ Geforce ok for simulations but not compatible with RT
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Jitter
๏ Using Geforce cards (gamer oriented), to reduce cost

๏ Using only one GPU gives lower throughput

๏ 2 GPUs : increased jitter on GeForce compensate gain in throughput 
(not compatible with RT, no point to use 2 GPUs)

๏ Part of jitter (single GPU) may be due to hardware (X79 chipset)
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The MAORY case
๏ MCAO with 6 LGS WFS 80x80 (baseline = 12x12 pixels) and 3 DMs

๏ 6 dual-GPU nodes: 1/WFS (cmd vector integrated out of the nodes)

๏ Close to 200Hz
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Conclusions
๏ Throughput is there

๏ RT operations for SCAO 80x80 @>500Hz (2 GPUs)

๏ CUDA framework allows optimizations (N streams) and memcopy 
latency hiding

๏ Means to reduce jitter

๏ Use of RT kernel with nvidia RT patch

๏ Use of professional Tesla boards (M2090, K10, K20, K20X, …)

๏ Long-run performance (including jitter) compatible with RT operations 
on Tesla boards

๏ GeForce have similar throughput, but...

๏ Huge jitter (>2ms) → performance not stable

๏ OK for simulations but incompatible with RT
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Future works
๏ Use host level (kernel level) for profiling:

๏ Absolute performance and jitter measurements

๏ Kernel module for data exchange

๏ The first step is to feed the GPU with a custom kernel module with 
GPU direct compatibility

๏ Next the GPU can feed a second kernel module 
(also GPU direct compatible)

๏ Accurate precision of the real jitter 

๏ Acquisition interface through serial protocol

๏ Studies on MPI/RT


