



### Studying GPU based RTC for TMT NFIRAOS

Lianqi Wang

Thirty Meter Telescope Project

RTC Workshop Dec 04, 2012



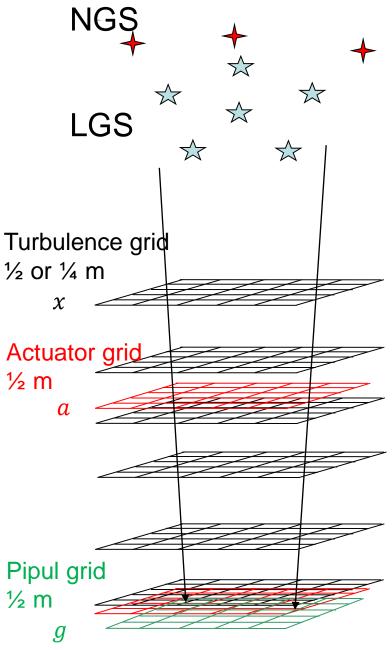
## Outline

- Tomography with iterative algorithms on GPUs
- Matrix vector multiply approach
  - Assembling AO control matrix
  - Applying matrix vector multiply
- GPU based RTC
- Benchmarking results
- Conclusion



# Minimum Variance Reconstructor

• Minimizing  $\sigma^2$  over target FoV (9 directions in  $\Phi$ 30")


$$\sigma^{2} = \left\langle \left\| H_{x} x - H_{a} a \right\|^{2} \right\rangle$$
  
with  $g = G_{p} H_{x} x + n$ 

Gives tomography

$$\widehat{x} = \left(H_x^T G_p^T C_{nn}^{-1} G_p H_x + C_{xx}^{-1}\right)^{-1} H_x^T G_p^T C_{nn}^{-1} g$$

• And DM fitting over target FoV  $a = (H_a^T W H_a)^{-1} H_a^T W \widetilde{H}_x \widehat{x}$ 

### Tomography $x = (H_{x}^{T}G_{p}^{T}C_{nn}^{-1}G_{p}H_{x} + C_{xx}^{-1})^{-1}H_{x}^{T}G_{p}^{T}C_{nn}^{-1}g$ LGS $H_x$ : ray tracing from x to p compute gradient from p $G_{p}$ : C<sub>nn</sub>: Noise covariance matrix Turbulence grid $C_{xx}^{-1}$ : Using bi-harmonic approximation $\frac{1}{2}$ or $\frac{1}{4}$ m The inverse is solved using iterative X algorithms like Conjugate Gradients Actuator gric $\frac{1}{2}$ m a Pipul grid $\frac{1}{2}$ m g



DM Fitting  
$$a = (H_a^T W H_a)^{-1} H_a^T W H_x x$$

Use sparse matrix based operation for the moment.



### Benchmarking

### Hardware

- Single Core i7 3820 @ 3.60 GHz
- 2 NVIDIA GTX 580 GPU board
  - GB graphics memory with 192GB/s theoretical throughput
  - 512 stream processors with 1.6TFlops theoretical throughput

### Software

- 64 bit Linux
- CUDA 4.0 C runtime library with nvcc
- cublas, cuFFT, cuSparse, cuRand, etc from CUDA package
- Use single precision floating number



## Benchmarking Results of Iterative Algorithms for Tomography

|         | Timing (ms) Incr WFE ( |       |
|---------|------------------------|-------|
| CG30OS0 | 5.17                   | 44.3  |
| CG30OS4 | 18.20                  | 0     |
| CG30OS6 | 12.3                   | 11.2  |
| FD1OS0  | 0.49                   | 52.8  |
| FD1OS6  | 1.37                   | 33.8  |
| FD2OS0  | 0.78                   | 42.9  |
| FD2OS6  | 2.60                   | -16.9 |
| FD3OS0  | 1.04                   | 42.6  |
| FD3OS6  | 3.04                   | -19.7 |

- CG: Conjugate Gradients
- FD: Fourier Domain Preconditioned CG.
- OSn: Over sampling n tomography layers (1/4 m spacing)



## **Tomography Detailed Timing**

HIRT METER TELESCOPE

 $x = (H_{x}^{T}G_{p}^{T}C_{nn}^{-1}G_{p}H_{x} + C_{xx}^{-1})^{-1}H_{x}^{T}G_{p}^{T}C_{nn}^{-1}g$ 

| Tomo          | micro-sec | Flop     | Mem      | GB/s | GFlops |
|---------------|-----------|----------|----------|------|--------|
| $H_{\chi}$    | 74        | 10616832 | 15925248 | 215  | 143    |
| $G_p$         | 45        | 278856   | 1921008  | 43   | 6      |
| $G_P^T$       | 50        | 402792   | 2106912  | 42   | 8      |
| $H'_{\chi}$   | 122       | 10616832 | 15925248 | 131  | 87     |
| $C_{xx}^{-1}$ | 48        | 626688   | 2064384  | 43   | 13     |
| Total         | 339       |          |          |      |        |

#### Preconditioner: $Mx = \mathcal{F}^{-1}[A\mathcal{F}[x]]$ where A is block diagonal matrix

|                    |           |            | <u>_</u> |      |        |
|--------------------|-----------|------------|----------|------|--------|
| FDPCG              | micro-sec | Flop       | Mem      | GB/s | GFlops |
| F                  | 115       | 79,531,761 | 1769472  | 15   | 692    |
| A                  | 188       | 5,308,416  | 10616832 | 56   | 28     |
| $\mathcal{F}^{-1}$ | 114       | 79,531,761 | 1769472  | 16   | 698    |



## **Total Timing**

 DM Fitting uses sparse matrix approach. Haven't yet optimized. Potential to speed up by a few times

| micro-sec                 | LHS  | RHS  | Total |
|---------------------------|------|------|-------|
| Tomography (2 Iterations) | 2016 | 584  | 2600  |
| DM Fitting (4 iterations) | 1641 | 2862 | 4503  |



## What limits our performance?

We are not limited by the steady rate throughput

- 1581 GFlops of single precision floating point number operation
- 192 GB/s device memory
- We are limited by latency
  - Kernel launch overhead:
    - ~2.3 micro-second for asynchronous launch,
    - ~6.5 micro-second for synchronization
  - Device memory latency: 600 cycles, ~0.3 micro-second, for intermediate quantities.
    - Sparse matrix vector multiply need to be carefully optimized
  - PCI-E interface (2.0): 8GB/s, 11 micro-second latency, for gradients and actuator commands input/output



- Still a long way to go with iterative algorithms for <1.25 ms latency
  - Hard to parallel across GPUs due to low PCIe bandwidth and high latency
- MVM is the easiest to implement in parallel
  - Regular memory access pattern avoids memory latency issue
  - GPU is good at it with ~200 GB/s device memory bandwidth
- Need to obtain the control matrix
  - Update the control matrix every 10 seconds
- Solution: Using iterative algorithms to solve columns of I
  - Update the control matrix with warm restart



• Tomography + fitting can be summarized as  $E = F_L^{-1} F_R R_L^{-1} R_R$ With

$$R_{L} = H_{x}^{T} G_{p}^{T} C_{nn}^{-1} G_{p} H_{x} + C_{xx}^{-1}; \quad R_{R} = H_{x}^{T} G_{p}^{T} C_{nn}^{-1} \quad \text{Tomography}$$
$$F_{L} = H_{a}^{T} W H_{a}; \quad F_{R} = H_{a}^{T} W \widetilde{H}_{x} \qquad \text{DM Fitting}$$

Matrix dimensions are

 $(7083 \times 30984) = (7083 \times 7083)^{-1}(7083 \times 62311) \times (62311 \times 62311)^{-1}(62311 \times 30984)$ 

7083: number of active actuators

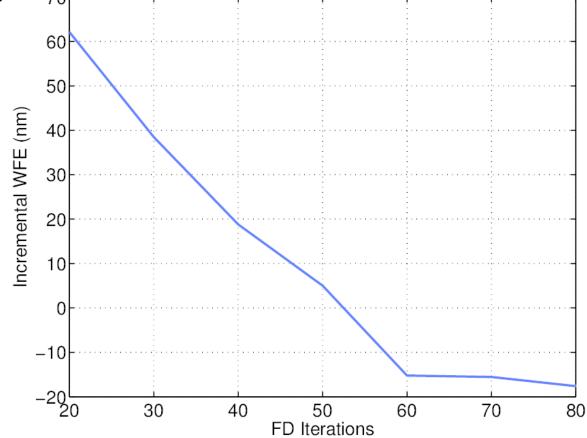
30984: number of WFS gradients

62311: number of points in tomography grid

- We assemble E by solving each column one at a time  $E(:,j) = F_L^{-1}F_RR_L^{-1}R_Re_i$
- There are 30984 tomography operations total
  - 1500 seconds to create (FDPCG with 50 iterations)
  - 150 seconds to update (when condition changes. 5 iterations, using warm restart)



# Assembling the transpose of control matrix in GPUs


- Solve for the transpose  $E^T = R_R^T R_L^{-1} F_R^T F_L^{-1}$
- The dimensions are

   (30984 × 7083) = (30984 × 62311) (62311 × 62311)<sup>-1</sup>
   × (62311 × 7083)(7083 × 7083)<sup>-1</sup>
- A factor of 4 reduction in number of tomography operations compared to solve E directly
  - $F_L^{-1}$  can be reused
  - 400 seconds to create (50 FD iterations. 2.2ms each step)
  - 40 seconds to update (5 FD iterations)
- With a 8 GPU machine
  - 50 seconds to create (can be avoided by warm warm restart)
  - 5 seconds to update (5 FD iterations, using warm restart)
  - 10 seconds for 10 FD iterations when condition varies significantly
  - NFIRAOS requirement is 10 seconds.

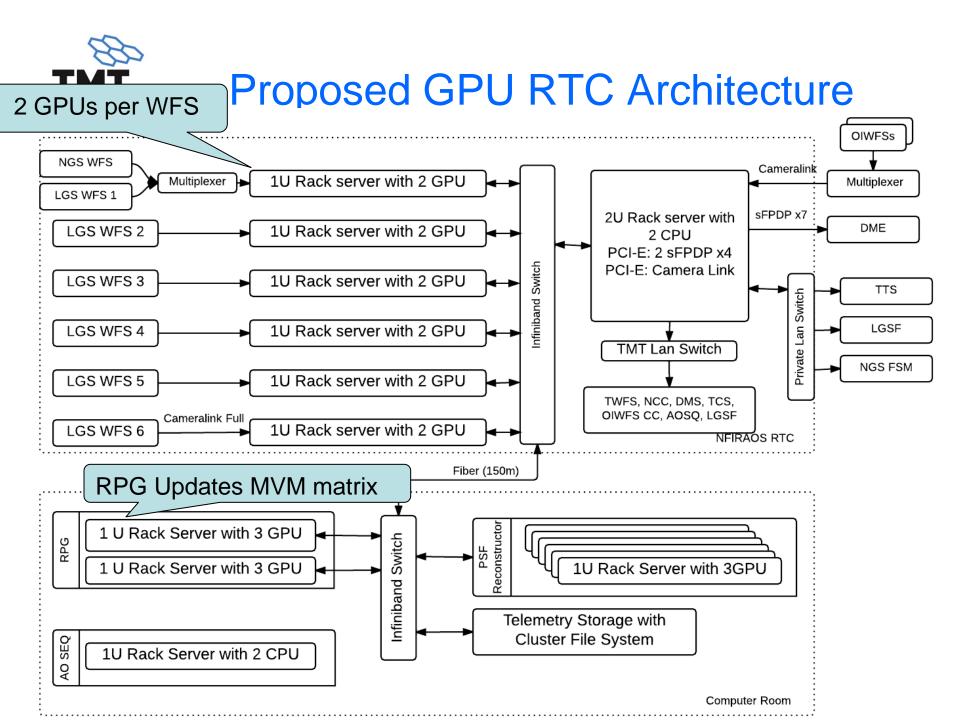


### What about Closed Loop Performance?

 RMS wavefront error in science FoV is comparable to baseline algorithm (CG30) with 50 FDPCG iterations (OS6)

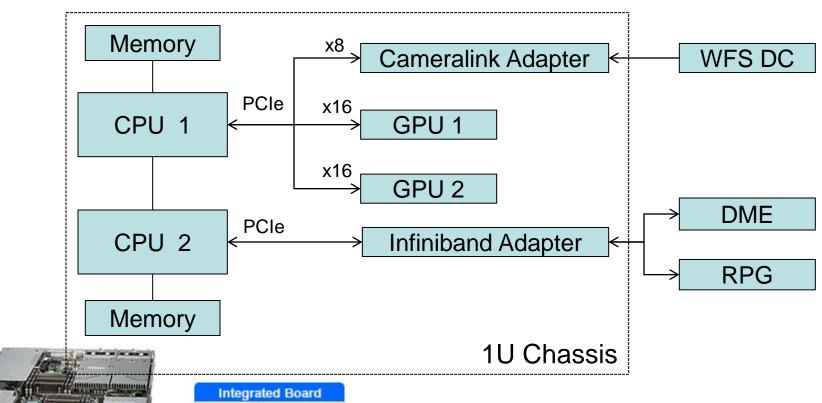





### GPUs required to apply MVM at 800 Hz for NFIRAOS

### Assuming 1.00 ms total time

| NGPU   | Compute<br>MFLOP | Memory<br>MB | PCI-E<br>kB | Compute<br>GFLOPS | Device Mem<br>GB/s | PCI-E<br>MB/s |
|--------|------------------|--------------|-------------|-------------------|--------------------|---------------|
| 1      | 209              | 837          | 149         | 409               | 818                | 145           |
| 6      | 35               | 140          | 48          | 82                | 136                | 47            |
| 8      | 26               | 105          | 43          | 51                | 102                | 42            |
| Rating |                  | 3G           |             | 1581              | 192                | 8192          |

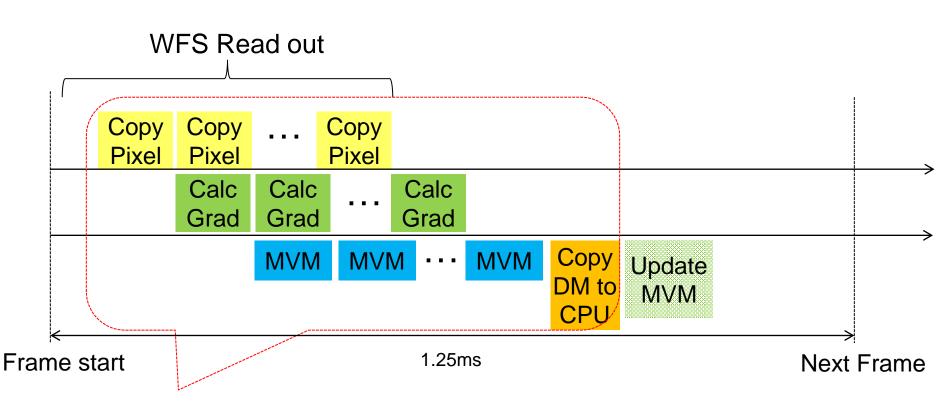

| Red    | No achievable     |  |
|--------|-------------------|--|
| Yellow | Nearly achievable |  |
| Green  | Achievable        |  |

A minimum of 6-8 GTX 580 GPU is needed to apply MVM





## 1U Server for Each LGS WFS

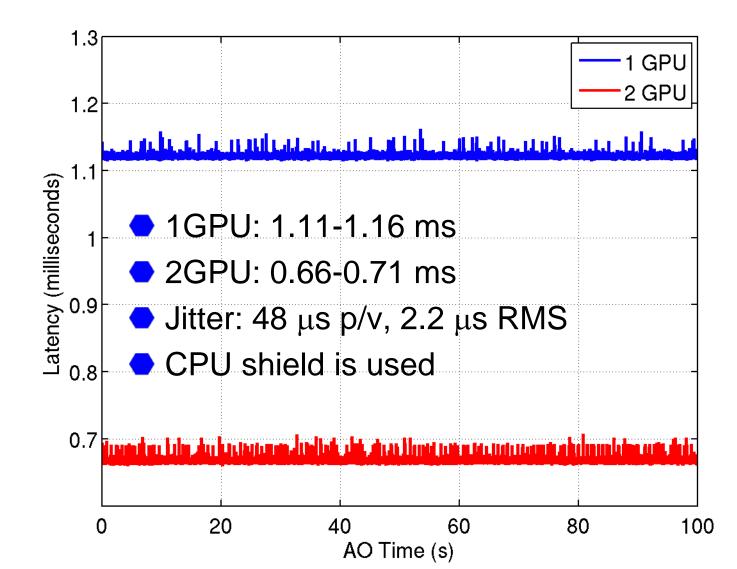



X9DRG-HTF

- Infiniband for control matrix and telemetry
- Cameralink (or else?) for WFS pixel data

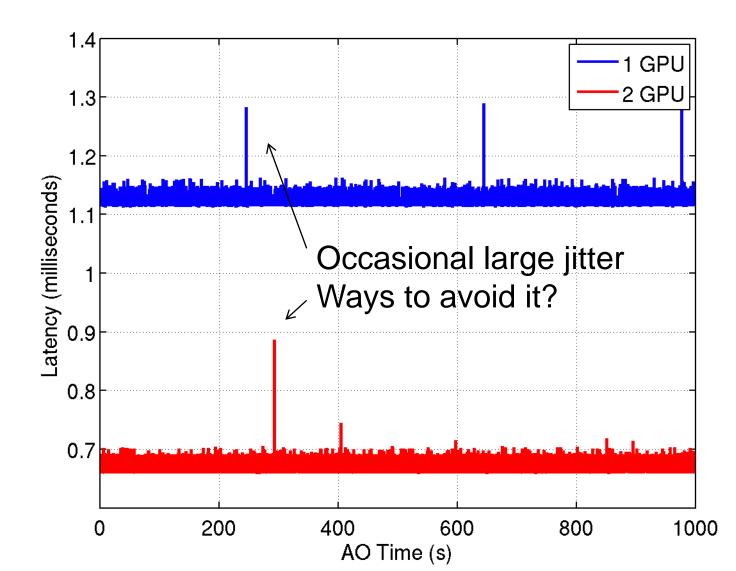


# Pipelining in GPU using 3 streams




### Benchmarked for an LGS WFS with 2 GTX 580

- MVM takes most of the time.
- Memory copying is indeed concurrent with computing




### **End to End Latency**





### For 1000 seconds





- Copying updated MVM matrix to RTC
  - Do so after DM actuator commands are ready
  - Measured 0.1 ms for 10 columns
  - 519 time steps to copy 5182 columns
- Collect statistics to update matched filter coefficients
  - Do so after DM actuator commands are ready
  - Benchmark next
- Etc
- 0.5 ms to spare



**Background process** 

Updating MVM matrix when condition varies


- Role of reconstruction parameter generator (RPG).
- Copy to RTC over Infiniband or ethernet

etc





- Current gen GPU can handle iterative wavefront reconstruction algorithms in a few ms.
- Control matrix for MVM can be updated every 10 seconds using FDPCG tomography algorithm to cope with varying conditions
- With MVM, A 2 GPU server per LGS WFS can turn pixels into DM actuator commands in 0.7ms, meeting the requirement with good margin





### Acknowledgements



- The author gratefully acknowledges the support of the TMT collaborating institutions. They are
  - the Association of Canadian Universities for Research in Astronomy (ACURA),
  - the California Institute of Technology,
  - the University of California,
  - the National Astronomical Observatory of Japan,
  - the National Astronomical Observatories of China and their consortium partners,
  - and the Department of Science and Technology of India and their supported institutes.
- This work was supported as well by
  - the Gordon and Betty Moore Foundation,
  - the Canada Foundation for Innovation,
  - the Ontario Ministry of Research and Innovation,
  - the National Research Council of Canada,
  - the Natural Sciences and Engineering Research Council of Canada,
  - the British Columbia Knowledge Development Fund,
  - the Association of Universities for Research in Astronomy (AURA)
  - and the U.S. National Science Foundation.