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Tomography with iterative algorithms on GPUs 
Matrix vector multiply approach 
– Assembling AO control matrix 
– Applying matrix vector multiply 

GPU based RTC 
Benchmarking results 
Conclusion 
 
 

Outline 
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Minimum Variance Reconstructor 

Minimizing      over target FoV (9 directions in Ф30”) 
 
 

 
Gives tomography 

 
 

And DM fitting over target FoV 
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Tomography 
 
 
Hx:    ray tracing from x to p 
Gp:    compute gradient from p 
Cnn:  Noise covariance matrix 
Cxx

-1: Using bi-harmonic approximation 
The inverse is solved using iterative 
algorithms like Conjugate Gradients 
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DM Fitting 
 
 
Use sparse matrix based 
operation for the moment. 
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Benchmarking 

Hardware 
– Single Core i7 3820 @ 3.60 GHz 
– 2 NVIDIA GTX 580 GPU board 

3 GB graphics memory with 192GB/s theoretical throughput 
512 stream processors with 1.6TFlops theoretical throughput 

Software 
– 64 bit Linux 
– CUDA 4.0 C runtime library with nvcc 
– cublas, cuFFT, cuSparse, cuRand, etc from CUDA package 
– Use single precision floating number 
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Benchmarking Results of  
Iterative Algorithms for Tomography 

CG: Conjugate Gradients 
FD: Fourier Domain Preconditioned CG.  
OSn: Over sampling n tomography layers (¼  m spacing) 

  Timing (ms) Incr WFE (nm) 
CG30OS0 5.17 44.3 
CG30OS4 18.20 0 
CG30OS6 12.3 11.2 
FD1OS0 0.49 52.8 
FD1OS6 1.37 33.8 
FD2OS0 0.78 42.9 
FD2OS6 2.60 -16.9 
FD3OS0 1.04 42.6 
FD3OS6 3.04 -19.7 
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Tomography Detailed Timing 

x= ( H x
T G p

T C nn
− 1 G p H x+C xx

− 1)− 1 H x
T G p

T Cnn
− 1 g

 Tomo micro-sec Flop Mem GB/s GFlops 
𝐻𝑥 74 10616832 15925248 215 143 
𝐺𝑝  45 278856 1921008 43 6 
𝐺𝑃𝑇 50 402792 2106912 42 8 
𝐻𝑥′  122 10616832 15925248 131 87 
𝐶𝑥𝑥−1 48 626688 2064384 43 13 
Total 339         

Preconditioner: 𝑀𝑀 = 𝓕−1[𝐴𝐴 𝑥 ] where A is block diagonal matrix 
FDPCG micro-sec Flop Mem GB/s GFlops 

𝓕 115 79,531,761 1769472 15 692 
𝐴 188 5,308,416 10616832 56 28 
𝓕−1 114 79,531,761 1769472 16 698 
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DM Fitting uses sparse matrix approach. Haven’t yet 
optimized. Potential to speed up by a few times 
 
 

 

Total Timing 

micro-sec LHS RHS Total 
Tomography (2 Iterations) 2016 584 2600 

DM Fitting (4 iterations) 1641 2862 4503 
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What limits our performance? 

We are not limited by the steady rate throughput 
– 1581 GFlops of single precision floating point number operation 
– 192 GB/s device memory 

We are limited by latency 
– Kernel launch overhead:  

~2.3 micro-second for asynchronous launch,  
~6.5 micro-second for synchronization 

– Device memory latency: 600 cycles, ~0.3 micro-second, for 
intermediate quantities. 

Sparse matrix vector multiply need to be carefully optimized 
– PCI-E interface (2.0): 8GB/s, 11 micro-second latency, for 

gradients and actuator commands input/output 
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Still a long way to go with iterative algorithms for <1.25 
ms latency 
– Hard to parallel across GPUs due to low PCIe bandwidth and 

high latency 

MVM is the easiest to implement in parallel 
– Regular memory access pattern avoids memory latency issue 
– GPU is good at it with ~200 GB/s device memory bandwidth 

Need to obtain the control matrix 
– Update the control matrix every 10 seconds 

Solution: Using iterative algorithms to solve columns of 𝐼 
– Update the control matrix with warm restart  

 

Matrix Vector Multiply (MVM) 
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Tomography + fitting can be summarized as 𝐸 = 𝐹𝐿−1𝐹𝑅𝑅𝐿−1𝑅𝑅 
With 
 

 
Matrix dimensions are 

7083 × 30984 = (7083 × 7083)−1(7083 × 62311) 
× (62311 × 62311)−1(62311 × 𝟑𝟑𝟑𝟑𝟑) 

7083: number of active actuators 
30984: number of WFS gradients 
62311: number of points in tomography grid 

We assemble E by solving each column one at a time 
𝐸 : , 𝑗 = 𝐹𝐿−1𝐹𝑅𝑅𝐿−1𝑅𝑅𝑒𝑗 

There are 30984 tomography operations total 
– 1500 seconds to create (FDPCG with 50 iterations) 
– 150 seconds to update (when condition changes. 5 iterations, using 

warm restart) 
 

Assembling the control matrix in GPUs 
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Solve for the transpose 𝐸𝑇 = 𝑅𝑅𝑇𝑅𝐿−1𝐹𝑅𝑇𝐹𝐿−1 
The dimensions are 

30984 × 7083 =  (30984 × 62311) (62311 × 62311)−1 
× (62311 × 7083)(7083 × 𝟕𝟕𝟕𝟕)−1 

A factor of 4 reduction in number of tomography operations 
compared to solve E directly 
– 𝐹𝐿−1  can be reused 
– 400 seconds to create (50 FD iterations. 2.2ms each step) 
– 40 seconds to update (5 FD iterations) 

With a 8 GPU machine 
– 50 seconds to create (can be avoided by warm warm restart) 
– 5 seconds to update (5 FD iterations, using warm restart) 
– 10 seconds for 10 FD iterations when condition varies significantly 
– NFIRAOS requirement is 10 seconds. 

 

Assembling the transpose of control 
matrix in GPUs 
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RMS wavefront error in science FoV is comparable to 
baseline algorithm (CG30) with 50 FDPCG iterations 
(OS6). 

What about Closed Loop 
Performance? 
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GPUs required to apply MVM at 800 
Hz for NFIRAOS 

NGPU Compute 
MFLOP 

Memory 
MB 

PCI-E 
kB 

Compute 
GFLOPS 

Device Mem 
GB/s 

PCI-E  
MB/s 

1 209 837 149 409 818 145 

6 35 140 48 82 136 47 

8 26 105 43 51 102 42 

Rating 3G 1581 192 8192 

Red No achievable 
Yellow Nearly achievable 
Green Achievable 

A minimum of 6-8 GTX 580 
GPU is needed to apply 
MVM 

Assuming 1.00 ms total time  
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Proposed GPU RTC Architecture 

RPG Updates MVM matrix 
 

2 GPUs per WFS 
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1U Server for Each LGS WFS  

CPU  1 

CPU  2 

GPU 1 

GPU 2 

Cameralink Adapter 

PCIe 

x8 

x16 

x16 

Memory 

Memory 

Infiniband Adapter 
PCIe 

WFS DC 

1U Chassis 

RPG 

DME 

• Infiniband for control matrix and telemetry 
• Cameralink (or else?)  for WFS pixel data 
 



18 

Benchmarked for an LGS WFS with 2 GTX 580  
– MVM takes most of the time. 
– Memory copying is indeed concurrent with computing 

Pipelining in GPU using 3 streams 

Calc 
Grad 

MVM Copy 
DM to 
CPU 

Update  
MVM 

Calc 
Grad 

Calc 
Grad 

MVM MVM 

… 
… 

Copy 
Pixel 

Copy 
Pixel 

Copy 
Pixel 

… 

Frame start Next Frame 

WFS Read out 

1.25ms 
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1GPU: 1.11-1.16 ms 
2GPU: 0.66-0.71 ms 
Jitter: 48 µs p/v, 2.2 µs RMS 
CPU shield is used 

End to End Latency 
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For 1000 seconds 

Occasional large jitter 
Ways to avoid it? 
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Copying updated MVM matrix to RTC 
– Do so after DM actuator commands are ready 
– Measured 0.1 ms for 10 columns 
– 519 time steps to copy 5182 columns 

Collect statistics to update matched filter coefficients 
– Do so after DM actuator commands are ready 
– Benchmark next 

Etc 
0.5 ms to spare 
 

Other real time tasks 
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Updating MVM matrix when condition varies 
– Role of reconstruction parameter generator (RPG).  
– Copy to RTC over Infiniband or ethernet 

etc 

Background process 
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Current gen GPU can handle iterative wavefront 
reconstruction algorithms in a few ms. 
Control matrix for MVM can be updated every 10 
seconds using FDPCG tomography algorithm to cope 
with varying conditions 
With MVM, A 2 GPU server per LGS WFS can turn 
pixels into DM actuator commands in 0.7ms, meeting the 
requirement with good margin 
 
 
Any other concerns? 

Conclusions 
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