

Studying GPU based RTC for TMT NFIRAOS

Lianqi Wang

Thirty Meter Telescope Project

RTC Workshop Dec 04, 2012

- **Tomography with iterative algorithms on GPUs**
- Matrix vector multiply approach
	- Assembling AO control matrix
	- Applying matrix vector multiply
- GPU based RTC
- Benchmarking results
- ▶ Conclusion

Minimum Variance Reconstructor

Minimizing σ^2 over target FoV (9 directions in Ф30")

$$
\sigma^{2} = \left\langle \left\| H_{x} x - H_{a} a \right\|^{2} \right\rangle
$$

with $g = G_{p} H_{x} x + n$

Gives tomography

$$
\widehat{\boldsymbol{x}} = \left(\boldsymbol{H}_{\boldsymbol{x}}^T\boldsymbol{G}_{\boldsymbol{p}}^T\boldsymbol{C}_{nn}^{-1}\boldsymbol{G}_{\boldsymbol{p}}\boldsymbol{H}_{\boldsymbol{x}} + \boldsymbol{C}_{\boldsymbol{x}\boldsymbol{x}}^{-1}\right)^{-1}\boldsymbol{H}_{\boldsymbol{x}}^T\boldsymbol{G}_{\boldsymbol{p}}^T\boldsymbol{C}_{nn}^{-1}\boldsymbol{g}
$$

And DM fitting over target FoV $a = \left(H_a^T W H_a \right)^{-1} H_a^T W \widetilde{H}_x \widehat{x}$ *a a T a* \overline{C} ¹ \overline{H} \overline{H} \overline{H} \overline{H}

Tomography H_x : ray tracing from x to p
G_p: compute gradient fron compute gradient from p C_{nn} : Noise covariance matrix C_{xx}^{-1} : Using bi-harmonic approximation The inverse is solved using iterative algorithms like Conjugate Gradients $x = (H_x^T G_p^T C_{nn}^{-1} G_p H_x + C_{xx}^{-1})^{-1} H_x^T G_p^T C_{nn}^{-1} g$ LGS NG g χ \boldsymbol{a} Turbulence grid ½ or ¼ m **Actuator grid** $\frac{1}{2}$ m Pipul grid $\frac{1}{2}$ m

$$
+ \sum_{\substack{\rightarrow \\ \mathsf{LGS}}} + \sum_{\substack{\rightarrow \\ \mathsf{LGS}}} + \sum_{\substack{\mathsf{LGS}}} + \sum_{\substack{\mathsf{
$$

Use sparse matrix based operation for the moment.

Benchmarking

Hardware

- $-$ Single Core i7 3820 $@$ 3.60 GHz
- 2 NVIDIA GTX 580 GPU board
	- ●3 GB graphics memory with 192GB/s theoretical throughput
	- 512 stream processors with 1.6TFlops theoretical throughput

Software

- 64 bit Linux
- CUDA 4.0 C runtime library with nvcc
- cublas, cuFFT, cuSparse, cuRand, etc from CUDA package
- Use single precision floating number

Benchmarking Results of Iterative Algorithms for Tomography

- CG: Conjugate Gradients
- FD: Fourier Domain Preconditioned CG.
- OSn: Over sampling n tomography layers (¼ m spacing)

Tomography Detailed Timing

 $x = (H_x^T G_p^T C_{nn}^{-1} G_p H_x + C_{xx}^{-1})^{-1} H_x^T G_p^T C_{nn}^{-1} g$

Preconditioner: $Mx = \mathcal{F}^{-1}[AF[x]]$ where A is block diagonal matrix

Total Timing

● DM Fitting uses sparse matrix approach. Haven't yet optimized. Potential to speed up by a few times

What limits our performance?

● We are not limited by the steady rate throughput

- 1581 GFlops of single precision floating point number operation
- 192 GB/s device memory
- We are limited by latency
	- Kernel launch overhead:
		- ◆ ~2.3 micro-second for asynchronous launch,
		- ◆ ~6.5 micro-second for synchronization
	- Device memory latency: 600 cycles, ~0.3 micro-second, for intermediate quantities.
		- Sparse matrix vector multiply need to be carefully optimized
	- PCI-E interface (2.0): 8GB/s, 11 micro-second latency, for gradients and actuator commands input/output

- Still a long way to go with iterative algorithms for <1.25 ms latency
	- Hard to parallel across GPUs due to low PCIe bandwidth and high latency
- MVM is the easiest to implement in parallel
	- Regular memory access pattern avoids memory latency issue
	- $-$ GPU is good at it with \sim 200 GB/s device memory bandwidth
- Need to obtain the control matrix
	- Update the control matrix every 10 seconds
- \bullet Solution: Using iterative algorithms to solve columns of I
	- Update the control matrix with warm restart

Tomography + fitting can be summarized as $E = F_L^{-1} F_R R_L^{-1} R_R$ With

$$
R_{L} = H_{x}^{T} G_{p}^{T} C_{nn}^{-1} G_{p} H_{x} + C_{xx}^{-1}; \quad R_{R} = H_{x}^{T} G_{p}^{T} C_{nn}^{-1} \quad \text{ Tomography}
$$
\n
$$
F_{L} = H_{a}^{T} W H_{a}; \quad F_{R} = H_{a}^{T} W \widetilde{H}_{x} \qquad \text{DM Fitting}
$$

Matrix dimensions are

 $(7083 \times 30984) = (7083 \times 7083)^{-1}(7083 \times 62311)$ \times (62311 \times 62311)⁻¹(62311 \times **30984**)

7083: number of active actuators

30984: number of WFS gradients

62311: number of points in tomography grid

- We assemble E by solving each column one at a time $E(:,j) = F_L^{-1} F_R R_L^{-1} R_R e_j$
- There are **30984 tomography operations** total
	- 1500 seconds to create (FDPCG with 50 iterations)
	- 150 seconds to update (when condition changes. 5 iterations, using warm restart)

Assembling the transpose of control matrix in GPUs

- Solve for the transpose $E^T = R_R^T R_L^{-1} F_R^T F_L^{-1}$
- The dimensions are $(30984 \times 7083) = (30984 \times 62311) (62311 \times 62311)^{-1}$ \times (62311 \times 7083)(7083 \times **7083**)⁻¹
- A factor of 4 reduction in number of tomography operations compared to solve E directly
	- F_L^{-1} can be reused
	- 400 seconds to create (50 FD iterations. 2.2ms each step)
	- 40 seconds to update (5 FD iterations)
- With a 8 GPU machine
	- 50 seconds to create (can be avoided by warm warm restart)
	- 5 seconds to update (5 FD iterations, using warm restart)
	- 10 seconds for 10 FD iterations when condition varies significantly
	- NFIRAOS requirement is 10 seconds.

What about Closed Loop Performance?

▶ RMS wavefront error in science FoV is comparable to baseline algorithm (CG30) with 50 FDPCG iterations $(OS6)$ 70

GPUs required to apply MVM at 800 Hz for NFIRAOS

Assuming 1.00 ms total time

A minimum of 6-8 GTX 580 GPU is needed to apply MVM

1U Server for Each LGS WFS

THIRTY METER TELESCOPE

Pipelining in GPU using 3 streams

Benchmarked for an LGS WFS with 2 GTX 580

- MVM takes most of the time.
- Memory copying is indeed concurrent with computing

End to End Latency

For 1000 seconds

20

- Copying updated MVM matrix to RTC
	- Do so after DM actuator commands are ready
	- Measured 0.1 ms for 10 columns
	- 519 time steps to copy 5182 columns
- Collect statistics to update matched filter coefficients
	- Do so after DM actuator commands are ready
	- Benchmark next
- \blacktriangleright Etc.
- \bullet 0.5 ms to spare

Background process

● Updating MVM matrix when condition varies

- Role of reconstruction parameter generator (RPG).
- Copy to RTC over Infiniband or ethernet

- Current gen GPU can handle iterative wavefront reconstruction algorithms in a few ms.
- Control matrix for MVM can be updated every 10 seconds using FDPCG tomography algorithm to cope with varying conditions
- With MVM, A 2 GPU server per LGS WFS can turn pixels into DM actuator commands in 0.7ms, meeting the requirement with good margin

Acknowledgements

- The author gratefully acknowledges the support of the TMT collaborating institutions. They are
	- the Association of Canadian Universities for Research in Astronomy (ACURA),
	- the California Institute of Technology,
	- the University of California,
	- the National Astronomical Observatory of Japan,
	- the National Astronomical Observatories of China and their consortium partners,
	- and the Department of Science and Technology of India and their supported institutes.
- This work was supported as well by
	- the Gordon and Betty Moore Foundation,
	- the Canada Foundation for Innovation,
	- the Ontario Ministry of Research and Innovation,
	- the National Research Council of Canada,
	- the Natural Sciences and Engineering Research Council of Canada,
	- the British Columbia Knowledge Development Fund,
	- the Association of Universities for Research in Astronomy (AURA)
	- and the U.S. National Science Foundation.