
1

Studying GPU based RTC for TMT
NFIRAOS

Lianqi Wang

RTC Workshop
Dec 04, 2012

Thirty Meter Telescope Project

2

Tomography with iterative algorithms on GPUs
Matrix vector multiply approach
– Assembling AO control matrix
– Applying matrix vector multiply

GPU based RTC
Benchmarking results
Conclusion

Outline

3

Minimum Variance Reconstructor

Minimizing over target FoV (9 directions in Ф30”)

Gives tomography

And DM fitting over target FoV

n+xHG=g

aHxH=σ

xp

ax

with

22 −

() gCGHC+HGCGH=x nn
T
p

T
xxxxpnn

T
p

T
x

1111 −−−−

() xHWHWHH=a x
T
aa

T
a

~1−

σ2

4

Tomography

Hx: ray tracing from x to p
Gp: compute gradient from p
Cnn: Noise covariance matrix
Cxx

-1: Using bi-harmonic approximation
The inverse is solved using iterative
algorithms like Conjugate Gradients

x= (H x
T G p

T C nn
− 1 G p H x+C xx

− 1)− 1 H x
T G p

T C nn
− 1 g

LGS

NGS

𝑔

𝑥

𝑎

Turbulence grid
½ or ¼ m

Actuator grid
½ m

Pipul grid
½ m

5

DM Fitting

Use sparse matrix based
operation for the moment.

a= (H a
T W H a)

− 1 H a
T W H̃ x x

LGS

NGS

𝑔

𝑥

𝑎

Turbulence grid
½ or ¼ m

Actuator grid
½ m

Pipul grid
½ m

6

Benchmarking

Hardware
– Single Core i7 3820 @ 3.60 GHz
– 2 NVIDIA GTX 580 GPU board

3 GB graphics memory with 192GB/s theoretical throughput
512 stream processors with 1.6TFlops theoretical throughput

Software
– 64 bit Linux
– CUDA 4.0 C runtime library with nvcc
– cublas, cuFFT, cuSparse, cuRand, etc from CUDA package
– Use single precision floating number

7

Benchmarking Results of
Iterative Algorithms for Tomography

CG: Conjugate Gradients
FD: Fourier Domain Preconditioned CG.
OSn: Over sampling n tomography layers (¼ m spacing)

 Timing (ms) Incr WFE (nm)
CG30OS0 5.17 44.3
CG30OS4 18.20 0
CG30OS6 12.3 11.2
FD1OS0 0.49 52.8
FD1OS6 1.37 33.8
FD2OS0 0.78 42.9
FD2OS6 2.60 -16.9
FD3OS0 1.04 42.6
FD3OS6 3.04 -19.7

8

Tomography Detailed Timing

x= (H x
T G p

T C nn
− 1 G p H x+C xx

− 1)− 1 H x
T G p

T Cnn
− 1 g

 Tomo micro-sec Flop Mem GB/s GFlops
𝐻𝑥 74 10616832 15925248 215 143
𝐺𝑝 45 278856 1921008 43 6
𝐺𝑃𝑇 50 402792 2106912 42 8
𝐻𝑥′ 122 10616832 15925248 131 87
𝐶𝑥𝑥−1 48 626688 2064384 43 13
Total 339

Preconditioner: 𝑀𝑀 = 𝓕−1[𝐴𝐴 𝑥] where A is block diagonal matrix
FDPCG micro-sec Flop Mem GB/s GFlops

𝓕 115 79,531,761 1769472 15 692
𝐴 188 5,308,416 10616832 56 28
𝓕−1 114 79,531,761 1769472 16 698

9

DM Fitting uses sparse matrix approach. Haven’t yet
optimized. Potential to speed up by a few times

Total Timing

micro-sec LHS RHS Total
Tomography (2 Iterations) 2016 584 2600

DM Fitting (4 iterations) 1641 2862 4503

10

What limits our performance?

We are not limited by the steady rate throughput
– 1581 GFlops of single precision floating point number operation
– 192 GB/s device memory

We are limited by latency
– Kernel launch overhead:

~2.3 micro-second for asynchronous launch,
~6.5 micro-second for synchronization

– Device memory latency: 600 cycles, ~0.3 micro-second, for
intermediate quantities.

Sparse matrix vector multiply need to be carefully optimized
– PCI-E interface (2.0): 8GB/s, 11 micro-second latency, for

gradients and actuator commands input/output

11

Still a long way to go with iterative algorithms for <1.25
ms latency
– Hard to parallel across GPUs due to low PCIe bandwidth and

high latency

MVM is the easiest to implement in parallel
– Regular memory access pattern avoids memory latency issue
– GPU is good at it with ~200 GB/s device memory bandwidth

Need to obtain the control matrix
– Update the control matrix every 10 seconds

Solution: Using iterative algorithms to solve columns of 𝐼
– Update the control matrix with warm restart

Matrix Vector Multiply (MVM)

12

Tomography + fitting can be summarized as 𝐸 = 𝐹𝐿−1𝐹𝑅𝑅𝐿−1𝑅𝑅
With

Matrix dimensions are

7083 × 30984 = (7083 × 7083)−1(7083 × 62311)
× (62311 × 62311)−1(62311 × 𝟑𝟑𝟑𝟑𝟑)

7083: number of active actuators
30984: number of WFS gradients
62311: number of points in tomography grid

We assemble E by solving each column one at a time
𝐸 : , 𝑗 = 𝐹𝐿−1𝐹𝑅𝑅𝐿−1𝑅𝑅𝑒𝑗

There are 30984 tomography operations total
– 1500 seconds to create (FDPCG with 50 iterations)
– 150 seconds to update (when condition changes. 5 iterations, using

warm restart)

Assembling the control matrix in GPUs

111 ; −−− = nn
T
p

T
xRxxxpnn

T
p

T
xL CGHRC+HGCGH=R

x
T
aRa

T
aL HWHFWHH=F ~ ; =

Tomography

DM Fitting

13

Solve for the transpose 𝐸𝑇 = 𝑅𝑅𝑇𝑅𝐿−1𝐹𝑅𝑇𝐹𝐿−1
The dimensions are

30984 × 7083 = (30984 × 62311) (62311 × 62311)−1
× (62311 × 7083)(7083 × 𝟕𝟕𝟕𝟕)−1

A factor of 4 reduction in number of tomography operations
compared to solve E directly
– 𝐹𝐿−1 can be reused
– 400 seconds to create (50 FD iterations. 2.2ms each step)
– 40 seconds to update (5 FD iterations)

With a 8 GPU machine
– 50 seconds to create (can be avoided by warm warm restart)
– 5 seconds to update (5 FD iterations, using warm restart)
– 10 seconds for 10 FD iterations when condition varies significantly
– NFIRAOS requirement is 10 seconds.

Assembling the transpose of control
matrix in GPUs

14

RMS wavefront error in science FoV is comparable to
baseline algorithm (CG30) with 50 FDPCG iterations
(OS6).

What about Closed Loop
Performance?

15

GPUs required to apply MVM at 800
Hz for NFIRAOS

NGPU Compute
MFLOP

Memory
MB

PCI-E
kB

Compute
GFLOPS

Device Mem
GB/s

PCI-E
MB/s

1 209 837 149 409 818 145

6 35 140 48 82 136 47

8 26 105 43 51 102 42

Rating 3G 1581 192 8192

Red No achievable
Yellow Nearly achievable
Green Achievable

A minimum of 6-8 GTX 580
GPU is needed to apply
MVM

Assuming 1.00 ms total time

16

Proposed GPU RTC Architecture

RPG Updates MVM matrix

2 GPUs per WFS

17

1U Server for Each LGS WFS

CPU 1

CPU 2

GPU 1

GPU 2

Cameralink Adapter

PCIe

x8

x16

x16

Memory

Memory

Infiniband Adapter
PCIe

WFS DC

1U Chassis

RPG

DME

• Infiniband for control matrix and telemetry
• Cameralink (or else?) for WFS pixel data

18

Benchmarked for an LGS WFS with 2 GTX 580
– MVM takes most of the time.
– Memory copying is indeed concurrent with computing

Pipelining in GPU using 3 streams

Calc
Grad

MVM Copy
DM to
CPU

Update
MVM

Calc
Grad

Calc
Grad

MVM MVM

…
…

Copy
Pixel

Copy
Pixel

Copy
Pixel

…

Frame start Next Frame

WFS Read out

1.25ms

19

1GPU: 1.11-1.16 ms
2GPU: 0.66-0.71 ms
Jitter: 48 µs p/v, 2.2 µs RMS
CPU shield is used

End to End Latency

20

For 1000 seconds

Occasional large jitter
Ways to avoid it?

21

Copying updated MVM matrix to RTC
– Do so after DM actuator commands are ready
– Measured 0.1 ms for 10 columns
– 519 time steps to copy 5182 columns

Collect statistics to update matched filter coefficients
– Do so after DM actuator commands are ready
– Benchmark next

Etc
0.5 ms to spare

Other real time tasks

22

Updating MVM matrix when condition varies
– Role of reconstruction parameter generator (RPG).
– Copy to RTC over Infiniband or ethernet

etc

Background process

23

Current gen GPU can handle iterative wavefront
reconstruction algorithms in a few ms.
Control matrix for MVM can be updated every 10
seconds using FDPCG tomography algorithm to cope
with varying conditions
With MVM, A 2 GPU server per LGS WFS can turn
pixels into DM actuator commands in 0.7ms, meeting the
requirement with good margin

Any other concerns?

Conclusions

24

Acknowledgements

The author gratefully acknowledges the support of the TMT collaborating
institutions. They are

– the Association of Canadian Universities for Research in Astronomy (ACURA),
– the California Institute of Technology,
– the University of California,
– the National Astronomical Observatory of Japan,
– the National Astronomical Observatories of China and their consortium partners,
– and the Department of Science and Technology of India and their supported institutes.

This work was supported as well by
– the Gordon and Betty Moore Foundation,
– the Canada Foundation for Innovation,
– the Ontario Ministry of Research and Innovation,
– the National Research Council of Canada,
– the Natural Sciences and Engineering Research Council of Canada,
– the British Columbia Knowledge Development Fund,
– the Association of Universities for Research in Astronomy (AURA)
– and the U.S. National Science Foundation.

	Studying GPU based RTC for TMT NFIRAOS
	Outline
	Minimum Variance Reconstructor
	Slide Number 4
	Slide Number 5
	Benchmarking
	Benchmarking Results of �Iterative Algorithms for Tomography
	Tomography Detailed Timing
	Total Timing
	What limits our performance?
	Matrix Vector Multiply (MVM)
	Assembling the control matrix in GPUs
	Assembling the transpose of control matrix in GPUs
	What about Closed Loop Performance?
	GPUs required to apply MVM at 800 Hz for NFIRAOS
	Proposed GPU RTC Architecture
	1U Server for Each LGS WFS
	Pipelining in GPU using 3 streams
	End to End Latency
	For 1000 seconds
	Other real time tasks
	Background process
	Conclusions
	Acknowledgements
	Pseudo Open Loop Gradients
	Minimum Variance Split Tomography
	Programming in CUDA: Example
	CUDA: �Compute Unified Device Architecture

