
VxWorks on Intel for real time high

performance computing

Helmut Tischer
Software Development Division

htischer@eso.org

mailto:htischer@eso.org

RTC Workshop 04-Dec-2012

Why a Real Time Operating System?

 Distributed Systems
 Doing processing at high throughput in time is not enough

 Need to use operating system facilities for IO and administration

 For efficient development, need
 to follow future technology

 flexibility to add, remove and reassign services or update requirements

 avoiding dependencies to non Real Time OS behavior or side effects of other
jobs.

 RTOS designed for Real Time from ground up
 Features added in a way which do not violate real time

 Only needed services are activated

 Real Time Applications
 Identical treatment like non real time applications

 Normal operating system APIs can be used

 Simple communication between real time and non real time

 Additional facilities to control timing simple and accurate
 No homegrown limited spinlocks, no delegation to drivers

RTC Workshop 04-Dec-2012

Focus on Value Add

In long term

Buying commodity is much cheaper as manpower

Integration

User base Maintenance

Operating System

Application

Offload
To RTOS vendor

RTC Workshop 04-Dec-2012

Why Intel x86_64?

 “Too big to fail”
 Decades to port worldwide existing Software or having fast enough emulators

 Track record of backwards compatibility:
 16Bit code of 1978 still executable

 32Bit stable since 1985, complete since 1995

 64Bit spec stable since 2000, hardware available since 2004 (AMD 2003), ubiquitous
since 2008 (Not to confuse with Itanium!)

 Code density & memory bandwidth

 Supercomputers
 Garching SuperMUC #6 world rank

 147456 Sandy Bridge Cores @2.7 GHz

 SIMD - Fully Integrated DSP
 Guaranteed to be present in 64Bit

 Auto Vectorization by Compilers

 Intel understood the challenge of the high performance race
• Quickly scaling up Vector length, Superscalar, operands.

• SSE, SSE2, SSE3, SSSE3, SSE4.1 SSE4.2, AVX, AVX2 …

 Compiler ABI redesigned for 64Bit (registers, addressing, SIMD) – efficient!

 Competitors
 ARM 64Bit multicore and GPUs not mature

 MIPS, Freescale not following pace, special purpose, declining

 AMD/VIA follower or low cost

RTC Workshop 04-Dec-2012

Communication Overhead

Deploy Collect

Deploy Collect

Process

Process

Processing dominated

Transport dominated

Processing only

RTC Workshop 04-Dec-2012

 90% parallelization limits speedup to 10x

No matter how many CPUs!

 1967

 A small

sequential

portion

finally

dominates!

Amdahl’s Law

RTC Workshop 04-Dec-2012

RTOS Alternatives

 Windows CE
 Specialized?

 Becoming Extinct?

 OSE
 Programming Paradigm?

 Specialized?

 CPU support?

 Integrity
 Specialized?

 QNX
 Source code?

 Strategy?

 CPU support?

 VxWorks
 In House Competition Linux, but not for RTOS.

 Successful use in ESO since more as 15 years

RTC Workshop 04-Dec-2012

VxWorks owned by Intel

 Wind River was purchased 2009

 Sustaining support of x86

 Integration of Intel Software

Since VxWorks 6.9 (2011)

 Intel Integrated Performance Primitives (IPP)

• algorithm library for signal processing, image processing,

matrix operations, etc

 Intel Compiler (ICC)

• Highly optimizing for x86

• SIMD with auto-vectorization (parallelization)

• SIMD dynamically adjusting to detected CPU features

– Binary compatibility

– No recompile

RTC Workshop 04-Dec-2012

Auto-vectorization Example Code

void vmul(float * r,

 float * a,

 float * b)

{

 int i;

 for (i=0; i<4;++i)

 {

 r[i] = a[i] * b[i];

 }

}

void vmulr(float * __restrict r,

 const float * a,

 const float * b)

{

 int i;

 for (i=0; i<4;++i)

 {

 r[i] = a[i] * b[i];

 }

}

Intel - with context hints

icc -c -O2 -m64 -xavx

vmovups (%rsi),%xmm0

vmulps (%rdx),%xmm0,%xmm1

vmovups %xmm1,(%rdi)

retq

Intel - no assumptions

icc -c -O2 -m64 -xavx

vmovss (%rsi),%xmm0

vmulss (%rdx),%xmm0,%xmm1

vmovss %xmm1,(%rdi)

vmovss 0x4(%rsi),%xmm2

vmulss 0x4(%rdx),%xmm2,%xmm3

vmovss %xmm3,0x4(%rdi)

vmovss 0x8(%rsi),%xmm4

vmulss 0x8(%rdx),%xmm4,%xmm5

vmovss %xmm5,0x8(%rdi)

vmovss 0xc(%rsi),%xmm6

vmulss 0xc(%rdx),%xmm6,%xmm7

vmovss %xmm7,0xc(%rdi)

retq

GNU - loops

ccpentium -c -O2 -m64

xor %eax,%eax

movss (%rsi,%rax,1),%xmm0

mulss (%rdx,%rax,1),%xmm0

movss %xmm0,(%rdi,%rax,1)

add $0x4,%rax

cmp $0x10,%rax

jne 162 <vmulr+0x2>

repz retq

32 Bit code would need

8 instructions more for

call frame and setup!

Accurate

Declaration

Helps!

RTC Workshop 04-Dec-2012

VxWorks Evolution

 1987 – Introduction

 199x – VxWorks 5
 68K, Sparc, x86, PowerPC, ARM, Mips, SH

 Mass storage file system

 kernel configurator

 Downloadable Kernel Modules

 2002 – VxWorks 5.5 – still supported in 2012

 2004 – VxWorks 6 – Application Processes
 Modeled after Linux

 private memory, shared lib, resource reclamation

 Posix PSE52 conformance

 68K discontinued, Sparc only for LEON by 3rdparty

 2005 – VxWorks 6.2 – Hot plug filesys (USB)

 2007 – VxWorks 6.4 – Long term release

 2007 – VxWorks 6.5 – Network stack replaced

 2008 – VxWorks 6.6 – Multicore

 2009 – VxWorks 6.7 – Compile time configurable OS, source build.

 2011 – VxWorks 6.9 – 64Bit support
 Intel Compiler (x86 SIMD Auto vectorization)

 Performance Primitives (signal processing and math algebra)

 2012 – VxWorks 6.9.2 – Up to 32 Cores and hyperthreading on Intel CPUs

RTC Workshop 04-Dec-2012

Conservative

 VxWorks API is remarkably consistent
 Thousands of APIs same since 1987

 Very few APIs have changed
• Multicore: Certain rarely used APIs had to be replaced because of

implicit unicore assumptions
– Workaround available to not being blocked before porting

• 64Bit: Only pointers and opaque data types changed
– Backwards compatible types provided

– No impact if correct types for pointer arithmetic were already used.

– Compiler warnings added to identify conflicts

 Endian and hardware addresses:
 Abstraction Layers provided for portability

 Extremely simple hardware access helpful for rapid prototyping

 Internal Interfaces stable
 Drivers, BSPs and many OS libraries can be mostly exchanged

between versions

Reuse experience as well as large,existing source code

RTC Workshop 04-Dec-2012

Source Code available

 VxWorks customers are getting full operating

system source code

Allows keeping control in the future

Fixes can be integrated when necessary

White box analysis for root of unexpected behavior

Scalability

Extreme modular

• Everything is just a library

RTC Workshop 04-Dec-2012

Tools

 SystemViewer - Logic Analyser

 ProfileScope - Performance

 MemScope - Memory leaks

 StethoScope - Monitor

 CoverageScope

RTC Workshop 04-Dec-2012

 Mainline VxWorks:
 Industrial Control

Medical

Network Infrastructure

Consumer

Automotive

Military

Space
• James Web Space Telescope

• various Mars missions, e.g. Curiosity

 Special Versions
Airplanes, safety, security

• (DO-178B, ARINC 653, MILS)

Usage Domains

RTC Workshop 04-Dec-2012

Ecosystem

 Middleware

Fieldbusses, graphics, IEEE 1588 PTP, Soft-PLC,

algorithms, tools …

 Hardware

With BSPs or drivers

 Engineering services

 Consultants

 Support

… by Wind River and 3rd party

RTC Workshop 04-Dec-2012

ESO AO Test Computing Hardware

 Dell PowerEdge R910
 System memory size: 128 GB

 4 Processor sockets, each with
• 10 cores, 2.27 GHz, 2.5 MB L2 cache, 24 MB L3 cache

• Processor name: Intel(R) Xeon(R) CPU E7-4860

 Dell PowerEdge R710
 10 Gigabit fibre Intel ethernet card

 SATA disk

 System memory size: 24 GB

 2 Processor sockets, each with
• 6 cores, 3.46 GHz, 1.5 MB L2 cache, 12 MB L3 cache

• Processor name: Intel(R) Xeon(R) CPU X5690

 Both Systems:
 System memory speed: 1333 MHz

 CPU family: Westmere Microkernel, 64Bit, SSE4.2

 1 Gigabit Copper Intel ethernet card

 USB disks, CD-ROM drive

RTC Workshop 04-Dec-2012

Current state

 Reference BSP adapted

 Scripted kernel configuration to have consistency
across different BSPs

 ESO VLTSW build system integration

 Porting Guidelines
 64Bit, Multicore, endian

 Benchmark lessons:
1. Take care about transfer of data ownership

• Small local data set: Scales linear with core count

• Large heavy used shared memory across all cores:
– Reaches max performance with only 3 cores

– More cores as in one processor socket: Time worse as with 1 core
 Cache synchronization effect?

2. On VxWorks, interrupt and task response independent of
CPU load!

RTC Workshop 04-Dec-2012

Task Response Time

 While 5 Gbit/s network traffic

and full load on all cores

 normal VxWorks configuration

– no tuning!

-> jitterClkStart 4001,0

...

-> jitterReport

...

TASK RESPONSE JITTER

 Samples Maximum Average

 --------- --------- ---------

 818678 15.993 0.419

 Distribution:

 Time Range Count Count (log scale)

 --------------------- ------- ---------------------------------

 0.000 - 1.117 778096 |********************

 1.117 - 2.234 32066 |***************

 2.234 - 3.352 7087 |*************

 3.352 - 4.469 836 |**********

 4.469 - 5.587 187 |********

 5.587 - 6.704 176 |********

 6.704 - 7.822 124 |*******

 7.822 - 8.939 60 |******

 8.939 - 10.057 44 |******

 10.057 - 11.174 20 |*****

 11.174 - 12.292 16 |*****

 12.292 - 13.409 3 |**

 13.409 - 14.526 2 |**

 14.526 - 15.644 0 |

 15.644 - 16.761 1 |*

 16.761 - 17.879 0 |

RTC Workshop 04-Dec-2012

Task Response Time – simple tuning

 While 5 Gbit/s network traffic and full load on all cores

 taskCpuAffinitySet(), vxCpuReserve (),
vxbIntReroute(), no USB

 Further tuning candidates
 Reduce up to 2 μs HPET timestamp hardware overhead

by BIOS config for IO prio or replacement
[all Timings in μs]

-> jitterClkStart 4001,0

...

-> jitterReport

...

TASK RESPONSE JITTER

 Samples Maximum Average

 --------- --------- ---------

 812564 3.282 0.349

 Distribution:

 Time Range Count Count (log scale)

 --------------------- ------- ---------------------------------

 0.000 - 0.279 196606 |******************

 0.279 - 0.558 551748 |********************

 0.558 - 0.838 43145 |****************

 0.838 - 1.117 9618 |**************

 1.117 - 1.396 4133 |*************

 1.396 - 1.676 2158 |************

 1.676 - 1.955 1966 |***********

 1.955 - 2.234 1545 |***********

 2.234 - 2.514 1006 |**********

 2.514 - 2.793 524 |**********

 2.793 - 3.073 96 |*******

 3.073 - 3.352 19 |*****

 3.352 - 3.631 0 |

 3.631 - 3.911 0 |

 3.911 - 4.190 0 |

 4.190 - 4.469 0 |

RTC Workshop 04-Dec-2012

Optimizing SMP: CPU Reservation

 Increase CPU specific cache and TLB efficiency by not

allowing other tasks to preempt task running on a

reserved core and displace cache content

RTC Workshop 04-Dec-2012

Lessons learned

 Hyperthreading not useful for real time
 No fair assignment of CPU time, anyway memory bandwidth limit

 Verify driver availability before HW decision

 VxWorks Kernel and OS extremely stable

 „Traditional PC‟ features working out of the box

 Advanced features for multicore need BSP adaptation

 Multicore systems with one processor sockets are
commodity

 For Servers with multiple sockets we were early adopters
 on processor and interrupt enumeration not all possible cases processed

 ask Wind River support for debugging assistance, hot fix and integration of
the fix into future updates

 Or contract out the BSP at fixed price.

RTC Workshop 04-Dec-2012

Thank you

Helmut Tischer
Software Development Division

htischer@eso.org

mailto:htischer@eso.org

RTC Workshop 04-Dec-2012

Abstract

 VxWorks on Intel for real time high performance
computing
 Using a Real Time Operating System (RTOS) is essential to

meeting tight timing requirements in a rich application
environment without crippling OS and usage in an error prone
way on each update.

 We will see how the widespread RTOS VxWorks including
sourcecode access and Tools has kept the pace in the last 25
years and while maintaining broad compatibility has reached
support for Posix Processes, up to 32 Cores, 64 Bit, Vector
engines on up to date high end hardware.

 In SPARTA we run VxWorks on COTS Intel Multicore Servers
and are porting existing Software to it. We plan to use the easy
hardware access to integrate FPGAs, IEEE 1588 Precision Time
Protocol and to have a look into available cluster technologies.

 On x86-64, Vector engines are an inherent part of the mature ABI
and compilers. By eliminated communication complexity and
transport overhead, and Intel scaling up Vector performancy
quickly, we will evaluate how price/effort/performance/portability
will compete against GPUs.

