
VxWorks on Intel for real time high

performance computing

Helmut Tischer
Software Development Division

htischer@eso.org

mailto:htischer@eso.org

RTC Workshop 04-Dec-2012

Why a Real Time Operating System?

 Distributed Systems
 Doing processing at high throughput in time is not enough

 Need to use operating system facilities for IO and administration

 For efficient development, need
 to follow future technology

 flexibility to add, remove and reassign services or update requirements

 avoiding dependencies to non Real Time OS behavior or side effects of other
jobs.

 RTOS designed for Real Time from ground up
 Features added in a way which do not violate real time

 Only needed services are activated

 Real Time Applications
 Identical treatment like non real time applications

 Normal operating system APIs can be used

 Simple communication between real time and non real time

 Additional facilities to control timing simple and accurate
 No homegrown limited spinlocks, no delegation to drivers

RTC Workshop 04-Dec-2012

Focus on Value Add

In long term

Buying commodity is much cheaper as manpower

Integration

User base Maintenance

Operating System

Application

Offload
To RTOS vendor

RTC Workshop 04-Dec-2012

Why Intel x86_64?

 “Too big to fail”
 Decades to port worldwide existing Software or having fast enough emulators

 Track record of backwards compatibility:
 16Bit code of 1978 still executable

 32Bit stable since 1985, complete since 1995

 64Bit spec stable since 2000, hardware available since 2004 (AMD 2003), ubiquitous
since 2008 (Not to confuse with Itanium!)

 Code density & memory bandwidth

 Supercomputers
 Garching SuperMUC #6 world rank

 147456 Sandy Bridge Cores @2.7 GHz

 SIMD - Fully Integrated DSP
 Guaranteed to be present in 64Bit

 Auto Vectorization by Compilers

 Intel understood the challenge of the high performance race
• Quickly scaling up Vector length, Superscalar, operands.

• SSE, SSE2, SSE3, SSSE3, SSE4.1 SSE4.2, AVX, AVX2 …

 Compiler ABI redesigned for 64Bit (registers, addressing, SIMD) – efficient!

 Competitors
 ARM 64Bit multicore and GPUs not mature

 MIPS, Freescale not following pace, special purpose, declining

 AMD/VIA follower or low cost

RTC Workshop 04-Dec-2012

Communication Overhead

Deploy Collect

Deploy Collect

Process

Process

Processing dominated

Transport dominated

Processing only

RTC Workshop 04-Dec-2012

 90% parallelization limits speedup to 10x

No matter how many CPUs!

 1967

 A small

sequential

portion

finally

dominates!

Amdahl’s Law

RTC Workshop 04-Dec-2012

RTOS Alternatives

 Windows CE
 Specialized?

 Becoming Extinct?

 OSE
 Programming Paradigm?

 Specialized?

 CPU support?

 Integrity
 Specialized?

 QNX
 Source code?

 Strategy?

 CPU support?

 VxWorks
 In House Competition Linux, but not for RTOS.

 Successful use in ESO since more as 15 years

RTC Workshop 04-Dec-2012

VxWorks owned by Intel

 Wind River was purchased 2009

 Sustaining support of x86

 Integration of Intel Software

Since VxWorks 6.9 (2011)

 Intel Integrated Performance Primitives (IPP)

• algorithm library for signal processing, image processing,

matrix operations, etc

 Intel Compiler (ICC)

• Highly optimizing for x86

• SIMD with auto-vectorization (parallelization)

• SIMD dynamically adjusting to detected CPU features

– Binary compatibility

– No recompile

RTC Workshop 04-Dec-2012

Auto-vectorization Example Code

void vmul(float * r,

 float * a,

 float * b)

{

 int i;

 for (i=0; i<4;++i)

 {

 r[i] = a[i] * b[i];

 }

}

void vmulr(float * __restrict r,

 const float * a,

 const float * b)

{

 int i;

 for (i=0; i<4;++i)

 {

 r[i] = a[i] * b[i];

 }

}

Intel - with context hints

icc -c -O2 -m64 -xavx

vmovups (%rsi),%xmm0

vmulps (%rdx),%xmm0,%xmm1

vmovups %xmm1,(%rdi)

retq

Intel - no assumptions

icc -c -O2 -m64 -xavx

vmovss (%rsi),%xmm0

vmulss (%rdx),%xmm0,%xmm1

vmovss %xmm1,(%rdi)

vmovss 0x4(%rsi),%xmm2

vmulss 0x4(%rdx),%xmm2,%xmm3

vmovss %xmm3,0x4(%rdi)

vmovss 0x8(%rsi),%xmm4

vmulss 0x8(%rdx),%xmm4,%xmm5

vmovss %xmm5,0x8(%rdi)

vmovss 0xc(%rsi),%xmm6

vmulss 0xc(%rdx),%xmm6,%xmm7

vmovss %xmm7,0xc(%rdi)

retq

GNU - loops

ccpentium -c -O2 -m64

xor %eax,%eax

movss (%rsi,%rax,1),%xmm0

mulss (%rdx,%rax,1),%xmm0

movss %xmm0,(%rdi,%rax,1)

add $0x4,%rax

cmp $0x10,%rax

jne 162 <vmulr+0x2>

repz retq

32 Bit code would need

8 instructions more for

call frame and setup!

Accurate

Declaration

Helps!

RTC Workshop 04-Dec-2012

VxWorks Evolution

 1987 – Introduction

 199x – VxWorks 5
 68K, Sparc, x86, PowerPC, ARM, Mips, SH

 Mass storage file system

 kernel configurator

 Downloadable Kernel Modules

 2002 – VxWorks 5.5 – still supported in 2012

 2004 – VxWorks 6 – Application Processes
 Modeled after Linux

 private memory, shared lib, resource reclamation

 Posix PSE52 conformance

 68K discontinued, Sparc only for LEON by 3rdparty

 2005 – VxWorks 6.2 – Hot plug filesys (USB)

 2007 – VxWorks 6.4 – Long term release

 2007 – VxWorks 6.5 – Network stack replaced

 2008 – VxWorks 6.6 – Multicore

 2009 – VxWorks 6.7 – Compile time configurable OS, source build.

 2011 – VxWorks 6.9 – 64Bit support
 Intel Compiler (x86 SIMD Auto vectorization)

 Performance Primitives (signal processing and math algebra)

 2012 – VxWorks 6.9.2 – Up to 32 Cores and hyperthreading on Intel CPUs

RTC Workshop 04-Dec-2012

Conservative

 VxWorks API is remarkably consistent
 Thousands of APIs same since 1987

 Very few APIs have changed
• Multicore: Certain rarely used APIs had to be replaced because of

implicit unicore assumptions
– Workaround available to not being blocked before porting

• 64Bit: Only pointers and opaque data types changed
– Backwards compatible types provided

– No impact if correct types for pointer arithmetic were already used.

– Compiler warnings added to identify conflicts

 Endian and hardware addresses:
 Abstraction Layers provided for portability

 Extremely simple hardware access helpful for rapid prototyping

 Internal Interfaces stable
 Drivers, BSPs and many OS libraries can be mostly exchanged

between versions

Reuse experience as well as large,existing source code

RTC Workshop 04-Dec-2012

Source Code available

 VxWorks customers are getting full operating

system source code

Allows keeping control in the future

Fixes can be integrated when necessary

White box analysis for root of unexpected behavior

Scalability

Extreme modular

• Everything is just a library

RTC Workshop 04-Dec-2012

Tools

 SystemViewer - Logic Analyser

 ProfileScope - Performance

 MemScope - Memory leaks

 StethoScope - Monitor

 CoverageScope

RTC Workshop 04-Dec-2012

 Mainline VxWorks:
 Industrial Control

Medical

Network Infrastructure

Consumer

Automotive

Military

Space
• James Web Space Telescope

• various Mars missions, e.g. Curiosity

 Special Versions
Airplanes, safety, security

• (DO-178B, ARINC 653, MILS)

Usage Domains

RTC Workshop 04-Dec-2012

Ecosystem

 Middleware

Fieldbusses, graphics, IEEE 1588 PTP, Soft-PLC,

algorithms, tools …

 Hardware

With BSPs or drivers

 Engineering services

 Consultants

 Support

… by Wind River and 3rd party

RTC Workshop 04-Dec-2012

ESO AO Test Computing Hardware

 Dell PowerEdge R910
 System memory size: 128 GB

 4 Processor sockets, each with
• 10 cores, 2.27 GHz, 2.5 MB L2 cache, 24 MB L3 cache

• Processor name: Intel(R) Xeon(R) CPU E7-4860

 Dell PowerEdge R710
 10 Gigabit fibre Intel ethernet card

 SATA disk

 System memory size: 24 GB

 2 Processor sockets, each with
• 6 cores, 3.46 GHz, 1.5 MB L2 cache, 12 MB L3 cache

• Processor name: Intel(R) Xeon(R) CPU X5690

 Both Systems:
 System memory speed: 1333 MHz

 CPU family: Westmere Microkernel, 64Bit, SSE4.2

 1 Gigabit Copper Intel ethernet card

 USB disks, CD-ROM drive

RTC Workshop 04-Dec-2012

Current state

 Reference BSP adapted

 Scripted kernel configuration to have consistency
across different BSPs

 ESO VLTSW build system integration

 Porting Guidelines
 64Bit, Multicore, endian

 Benchmark lessons:
1. Take care about transfer of data ownership

• Small local data set: Scales linear with core count

• Large heavy used shared memory across all cores:
– Reaches max performance with only 3 cores

– More cores as in one processor socket: Time worse as with 1 core
 Cache synchronization effect?

2. On VxWorks, interrupt and task response independent of
CPU load!

RTC Workshop 04-Dec-2012

Task Response Time

 While 5 Gbit/s network traffic

and full load on all cores

 normal VxWorks configuration

– no tuning!

-> jitterClkStart 4001,0

...

-> jitterReport

...

TASK RESPONSE JITTER

 Samples Maximum Average

 --------- --------- ---------

 818678 15.993 0.419

 Distribution:

 Time Range Count Count (log scale)

 --------------------- ------- ---------------------------------

 0.000 - 1.117 778096 |********************

 1.117 - 2.234 32066 |***************

 2.234 - 3.352 7087 |*************

 3.352 - 4.469 836 |**********

 4.469 - 5.587 187 |********

 5.587 - 6.704 176 |********

 6.704 - 7.822 124 |*******

 7.822 - 8.939 60 |******

 8.939 - 10.057 44 |******

 10.057 - 11.174 20 |*****

 11.174 - 12.292 16 |*****

 12.292 - 13.409 3 |**

 13.409 - 14.526 2 |**

 14.526 - 15.644 0 |

 15.644 - 16.761 1 |*

 16.761 - 17.879 0 |

RTC Workshop 04-Dec-2012

Task Response Time – simple tuning

 While 5 Gbit/s network traffic and full load on all cores

 taskCpuAffinitySet(), vxCpuReserve (),
vxbIntReroute(), no USB

 Further tuning candidates
 Reduce up to 2 μs HPET timestamp hardware overhead

by BIOS config for IO prio or replacement
[all Timings in μs]

-> jitterClkStart 4001,0

...

-> jitterReport

...

TASK RESPONSE JITTER

 Samples Maximum Average

 --------- --------- ---------

 812564 3.282 0.349

 Distribution:

 Time Range Count Count (log scale)

 --------------------- ------- ---------------------------------

 0.000 - 0.279 196606 |******************

 0.279 - 0.558 551748 |********************

 0.558 - 0.838 43145 |****************

 0.838 - 1.117 9618 |**************

 1.117 - 1.396 4133 |*************

 1.396 - 1.676 2158 |************

 1.676 - 1.955 1966 |***********

 1.955 - 2.234 1545 |***********

 2.234 - 2.514 1006 |**********

 2.514 - 2.793 524 |**********

 2.793 - 3.073 96 |*******

 3.073 - 3.352 19 |*****

 3.352 - 3.631 0 |

 3.631 - 3.911 0 |

 3.911 - 4.190 0 |

 4.190 - 4.469 0 |

RTC Workshop 04-Dec-2012

Optimizing SMP: CPU Reservation

 Increase CPU specific cache and TLB efficiency by not

allowing other tasks to preempt task running on a

reserved core and displace cache content

RTC Workshop 04-Dec-2012

Lessons learned

 Hyperthreading not useful for real time
 No fair assignment of CPU time, anyway memory bandwidth limit

 Verify driver availability before HW decision

 VxWorks Kernel and OS extremely stable

 „Traditional PC‟ features working out of the box

 Advanced features for multicore need BSP adaptation

 Multicore systems with one processor sockets are
commodity

 For Servers with multiple sockets we were early adopters
 on processor and interrupt enumeration not all possible cases processed

 ask Wind River support for debugging assistance, hot fix and integration of
the fix into future updates

 Or contract out the BSP at fixed price.

RTC Workshop 04-Dec-2012

Thank you

Helmut Tischer
Software Development Division

htischer@eso.org

mailto:htischer@eso.org

RTC Workshop 04-Dec-2012

Abstract

 VxWorks on Intel for real time high performance
computing
 Using a Real Time Operating System (RTOS) is essential to

meeting tight timing requirements in a rich application
environment without crippling OS and usage in an error prone
way on each update.

 We will see how the widespread RTOS VxWorks including
sourcecode access and Tools has kept the pace in the last 25
years and while maintaining broad compatibility has reached
support for Posix Processes, up to 32 Cores, 64 Bit, Vector
engines on up to date high end hardware.

 In SPARTA we run VxWorks on COTS Intel Multicore Servers
and are porting existing Software to it. We plan to use the easy
hardware access to integrate FPGAs, IEEE 1588 Precision Time
Protocol and to have a look into available cluster technologies.

 On x86-64, Vector engines are an inherent part of the mature ABI
and compilers. By eliminated communication complexity and
transport overhead, and Intel scaling up Vector performancy
quickly, we will evaluate how price/effort/performance/portability
will compete against GPUs.

