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Outline

๏ AO end-to-end simulations at the ELT scale

๏ Hardware accelerators : GPUs

๏ A common framework for simulations and RT

๏ The COMPASS project

๏ The missing link : a low latency acquisition interface

๏ Conclusions & perspectives
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AO end-to-end simulations
๏ Multiple physics from turbulence generation to control theory

•Stochastic phenomena so Monte-Carlo gives the most realistic results

๏ ELT makes it a large scale problem : 

•Simulated pupil : ~2k x 2k pixels (hence 20k x 20k phase screens)

•FFT support size for image formation : ~4k x 4k 

•~5k sub-apertures and ~5k DM commands (several 100 GFLOPs needed for MVM in a 
simple real-time control scheme)

•Large number of iterations to reach convergence (10-100k)

๏ Advanced concepts for ELT AO modules (LGS MCAO, LTAO)

•Several WFS and DMs, use of LGS : larger sub-apertures, more pixels, need to generate     
     high-resolution images for LGS

๏ Change of paradigm :

•From home-brewed models to unified high                                                                 
performance models

•AO simulations must enter the HPC era  !    
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Hardware acceleration
๏ Current trends in the HPC industry

•Processors just not running faster since beginning of the century (clock speed 
cannot increase : heat, power, current leakage)

From free lunch is over : http://www.gotw.ca/publications/concurrency-ddj.htm
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Hardware acceleration
๏ Current trends in the HPC industry

•Processors just not running faster since beginning of the century (clock speed cannot 
increase : heat, power, current leakage)

•Concurrency is the new paradigm : hyper-threading, multi-core, many-core 

•The next revolution is primarily software : introduce concurrency in our software

๏ Heterogeneous architecture 

•General purpose multi-core processor + special purpose co-processor (DSP, GPU, MIC) or 
custom acceleration logic (FPGA) + high speed / low latency network interconnection

•Programming can intrinsically be tricky (different hardware = different programming 
models)

๏ Many-core : several approaches

•Use scaled down vector processors (Intel MIC, imminent)

•Use large amount of small scalar processors in a SIMD model (NVIDIA GPU, available)

•Requires fine grain parallelism (+ vectorization for Intel MIC): “no free lunch” !

•Co-processors: attached through PCIe bus (bandwidth + latency + memory model)
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Hardware acceleration

From “The death of CPU scaling” : http://www.extremtech.com
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GPU
๏ NVIDIA Compute Unified Device Architecture (CUDA)

•2000: programmable hardware for graphics = unified processor architecture, with scalar 
cores (NVIDIA). GPU term appears

•2003: the idea of General Purpose GPU appears (brookGPU API)

•2007: NVIDIA releases the CUDA framework for GPGPU

•2009: release of the OpenCL framework (not limited to NVIDIA / GPUs)

๏ Developments in GPU architectures

•Streaming Multiprocessors (SM) = clusters of processing cores. GPU = group of SMs + 
scheduler

•Inside a SM : SIMD units = group of executable threads (warps in CUDA)

•Several memory levels: low latency at the SM level (registers, shared memory) / higher 
latency at the chip level (global memory)

๏ High performance per W and per $ ratio

•Peak throughput > 1TFLOPs in single precision for few k$ and few 100W

•As of nov. 2012 : Fastest computer on the planet : Titan (17 PetaFLOPs !) equiped with 
NVIDIA K20 (62 supercomputers in the top500 using GPUs)

•

•
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YoGA
๏ 2-years development at LESIA

•Interfacing a high-level programming language (Yorick) with CUDA to build 
an optimized end-to-end simulation

•~X10 in performance as compared to single thread simulations

•Parts of the code show even larger speedups (control, supervision)

•Comprehensive interface for data reduction / debugging

๏ Loop closed ! Now adding features ...  

•Multiple phase screens, multiple SH WFS, NGS and LGS, multiple DMs, 
multiple targets available

•Simple LS control algorithm

•Prototype model for a pyramid WFS (under testing …)

•Adding multi-GPU mode (peer-to-peer + MPI support) in progress

•Stabilizing, testing, debugging, etc .. thanks to users
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YoGA performance
๏ SCAO profiles in ms on a Tesla M2090 (single GPU mode)

๏

๏

๏

๏

๏

๏

๏ Profile dominated by pure simulation tasks (WFS and DM 
models)

๏ Performance of core algorithms on a single GPU almost 
ensure real-time

๏ Not optimized for a specified GPU (auto-tuning)

Telescope 
diam.

Turbu 
generation

Raytracing 
turbu

Raytracing 
DM

WFS COG Control DM shape 
computation

Raytracing 
target

4m 0.107 0.008 0.008 0.138 0.013 0.019 0.137 0.008

8m 0.192 0.022 0.023 0.459 0.031 0.060 0.562 0.023

20m 0.550 0.135 0.136 3.07 0.079 0.363 3.22 0.137

30m 0.927 0.299 0.300 6.73 0.168 0.915 7.39 0.302

40m 1.44 0.526 0.525 11.9 0.320 2.263 13.62 0.527
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Simulations & RT
๏ Core algorithms in simulations are the core of a RTC

•Simulations : usually used to evaluate new control strategies (lot of time 
spent to develop, debug and test new algorithms)

•RTCS : needs to be tested using simulated data / needs to be supervised 
using simulated data

๏ Different goals

•Simulations : strive for high end-to-end throughput (reduce 
computational time) for quick diagnosis or to lead large scale parametric 
studies

•RT : needs high throughput but primarily driven by low latency & jitter

๏ Different constraints

•Simulations : all internal (generates its own data and play with it)

•RTC : interacts with the system (feeding and being fed)

•
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Common framework
๏ A lot of money (and brains !) could be saved if we had a 
common development framework

•Throughput is already there (if optimized): see Arnaud's talk later today

•First time an architecture could be used for both simulations and RT 
applications thanks to a comprehensive development framework (CUDA / 
OpenCL)

•Rather cheap solution using high-end off-the-shelf hardware with broad range 
market and free development framework (as compared to FPGA / DSP solutions)

•Development cost reduced to a minimum (only done once)

•Risk decreases while robustness and upgradeability increase significantly

๏ Need to address fundamental discrepancies between RT 
applications and simulations goals / constraints 

•Minimize latency and jitter

•Interact with the outside world optimally
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Common framework
๏ Unifying simulation and RT frameworks
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The COMPASS project
๏ COMputing Platform for Adaptive opticS Systems

๏ Build a unified framework on scalable heterogeneous architecture

•Federate efforts in the PHASE partnership (French HAR labs) to develop and maintain a 
numerical development platform for AO

•Associate partner: Maison de la simulation a joint laboratory between 5 partners (including 
CNRS, CEA and INRIA) for research in HPC

•Multi-disciplinary collaboration: AO + astrophysics + HPC

•End product: a high performance platform based on a total integration of software with 
hardware to run on scalable heterogeneous platforms

๏ Goals :

•Software development platform : validate key components / test new concepts

•Efficient computing environment: run large scale simulations

•Unified and optimized framework for PHASE

•Enable real-time applications: pathfinder for accelerator-based AO control

๏ 30 months, funding secured thanks to an ANR grant : 800k€ (total 
investment : 2.5 M€ from partners = 260 men.months + equipment)

๏



14

The COMPASS project
๏ COMPASS: make the link with E-ELT instrumentation

•Full scale end-to-end simulation platform from astrophysical objects to AO 
corrected data

•Generalized decision tool for ELT-CAM, ELT-IFU, ELT-MOS
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The COMPASS project
๏ COMPASS: port key algorithms to many-core

•Models: Realistic deformable mirror model, pyramid WFS model

•Control strategies: Minimum variance, LQG, Learn & Apply, iterative 
methods (FRiM), Fourier methods

•Supervision strategies: sparse matrix inversion, conjugate gradient

๏ The missing link: low latency data transfer

•Key requirement for an AO RTC using coprocessors (GPU, MIC) is the 
ability to transfer data at high bandwidth and low latency

•Bandwidth is there (128Gb/s for PCIe x16 Gen3)

•Limited by latency in transaction (cam. controller copies to the host 
memory and host copies to co-processor)

•Need to implement RDMA between the cam. controller and the co-
processor
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Low latency data transfer
๏ Interface between cam. controller and GPU 

•DMA: use pinned memory on the host (i.e. that cannot be moved or 
swapped by the system)

•CUDA: this host pinned memory is mapped on the GPU address space. 
GPU can access this memory asynchronously

•Heterogeneous architecture: can we transfer at minimum latency 
(PCIe bandwidth) data from a 3rd party device to the GPU ?

๏ GPU: opaque layer of vendor-supplied driver

•GPU must always be the master

•The 3rd party device driver should map his memory to somewhere 
mappable by the GPU 

•3rd party device memory must be pinned to ensure DMA
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Low latency data transfer
๏ CUDA: GPUdirect & Unified Virtual Addressing

•GPU can map addresses on
the PCIe bus in their address 
space

•Potentially enables RDMA from 
3rd party devices through PCIe

•Already used by Infiniband 
manufacturers (Mellanox) to
provide CUDA-friendly 
communications in large scale
clusters

๏ Could be implemented 
on PCIe development 
boards (PLDA, HighTech Global, ...)

•Requires a limited amount of development on top of the PCIe core on the FPGA

•Easy access to standard serial protocols (10 GbE for instance) 

CPU
DDR

memory

PCIe switch

DDR 
memory

FPGA Serial
(10 GbE)

DDR 
memory

10 GbE 
frame-grabber

GPU1

Pixel
data
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GPU-based RTC
๏ COMPASS: building a 
prototype for a 
GPU-based RTC

•Using this fast serial 
interface

•Commercial hardware: 
dual CPU socket + 4 GPUs

CPU1 CPU2GPU1

10GbE

GPU2

GPU4

10GbE

GPU3
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GPU-based RTC
๏ COMPASS: building a 
prototype for a 
GPU-based RTC

•Using this fast serial 
interface

•Commercial hardware: 
dual CPU socket + 4 GPUs

•Scalable for
increased throughput

CPU1 CPU2GPU1

10GbE

GPU2

QSFP+

GPU4

10GbE

GPU3

∞band switch

Hard real-time
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GPU-based RTC
๏ COMPASS: building a 
prototype for a 
GPU-based RTC

•Using this fast serial
interface

•Commercial hardware: 
dual CPU socket + 4 GPUs

•Scalable for
increased throughput

•Interfaced with soft 
real-time and telemetry
at high bandwidth CPU1 CPU2GPU1

10GbE

GPU2

QSFP+

GPU4

QPI : 200 Gb/s
QDR : 40 Gb/s

Storage

10GbE

GPU3

∞band switch

∞band switch

HP 390s HP 390s HP 390s HP 390s

Hard real-time

Soft real-time

10GbE switch

CPU2

QSFP+

Control Unit

PCIe x16 (g3): 128 Gb/s
PCIe x8 (g3): 64 Gb/s 
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The long-term approach
๏ GPU manufacturers: aggressive development schedule

•A new board every 6 months, new evolution of the architecture every 2 
years. 

•Long term hardware procurement not ensured with broad market 
products

• Market not primarily driven by HPC products

๏ Need for tailored COTS products with long-term 
maintenance and upgrade strategy

•VME specs are compatible with GPU requirements : asynchronous  
transfers, DMA, master / slave boards

•VPX : new high bandwidth evolution of the VMEbus with  10GbE, PCIe and 
RapidIO integration

•GPGPU is coming to VPX : GE products
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The long-term approach
๏ Example of COTS GPGPU system based on VPX

•GE intelligent Systems
VPX 6U CUDA starter Kit

•3 GPUs systems

•Next generation will
embark Kepler chips

•Native DMA with
10 GbE through VPX

•Linux environment

•Same framework for
 core computations : CUDA

•Specialized framework 
for communications
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Conclusions
๏ GPUs provide for the first time a scalable solution to 
unify simulations and RT frameworks at the ELT scale

•Commercial hardware, high programmability, high throughput

•Reduce cost and risk while increasing robustness and upgradeability

•Need to address fundamental discrepancies between simulations and RT 
goals / constraints (throughput / latency / jitter)

๏ COMPASS project: federate efforts of the French AO 
community to develop a high performance platform 
based on this unified framework

๏ Main challenge: low latency, GPU-friendly data transfer 
with serial protocols

•Based on commercial hardware with limited amount of development

•Need for a long-term approach : VPX COTS solutions ?
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Perspectives
๏ Intel Knights: the new competitors

•Many Integrated Core architecture inherits from project Larrabee: 64 bit x86 vector 
(512 bit wide) processor for graphics 

•PCIe co-processor, 60 cores @ 1.2GHz, limited on-board memory (8GB)

•Very similar to GPUs in some ways … well it's an hybrid architecture !

๏ No magic compiler = “no free lunch” !

•Still need to parallelize the code to reach peak performance

•Vectorization: additional constraint. What fraction of our codes is vectorizable ?

๏ Better integration with the GPP

•Sure it's an Intel product !

•How fast optimized standard numerical 
methods / optimized development tools 
will emerge for MIC ?

•Remember NVIDIA won the first round 
thanks to CUDA


