

### Impact of Latency and Jitter on the Performance of Adaptive Optics Systems for ELTs

### L.Pettazzi, E.Fedrigo, R.Clare ESO





# Motivation (1/2)

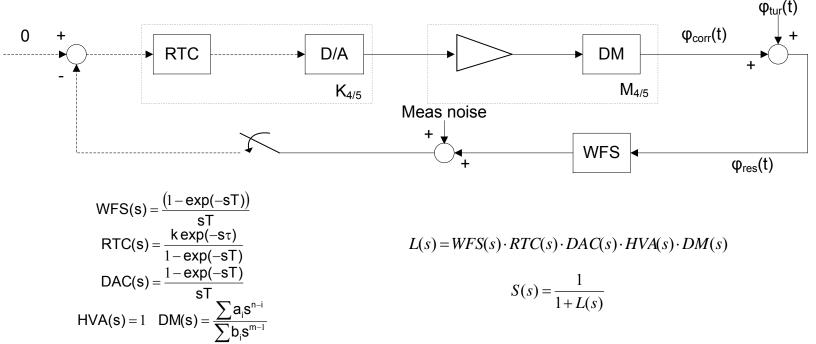
- Challenging performance requirements for AO systems in new generation ELTs
  - > Higher number of degrees of freedom  $\rightarrow$  higher complexity
  - > Deliver high Strehl images  $\rightarrow$  high-order corrections  $\rightarrow$  faster
  - In challenging *environmental* conditions (e.g. worse maximum seeing, telescope induced perturbations,....)
  - > In challenging **economical** conditions



- Challenging requirements on the RTC
  - > Amount of computations required per cycle
  - Time required to perform the abovementioned computations
  - ➤ At lowest possible cost → selection of RTC technology needs involved trade-off analysis

╞╤┇┇Ҩ┝╸╬╡┿╸┇┇═╡┇┇╤╴┇┇╤╴╬┇╘╛╬╣╘┉




# Motivation (2/2)

- Impact of RTC latency on the performance of AO loop well studied and understood (Fried 1990, Madec 1999, .....)
- Classical results apply to a fairly standard AO loop → can be used to get an idea of the required RTC performance
- More accurate analysis needed for trade-off analysis
  - Assumptions matching the ELT's expected operational conditions
  - > More accurate representation of the control cycle timing sequence
- Validation of the analysis tools needed to cross-check the validity of the results
  - Multi-disciplinary approach (e.g. analysis involving multiple tools: control model + high fidelity E2E simulators)

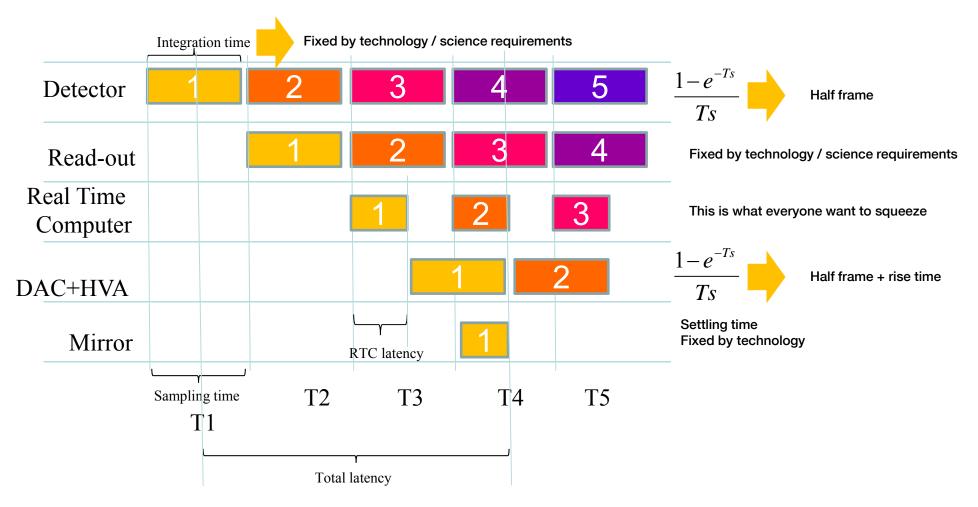


## Problem set up (1/3)

AO Loop



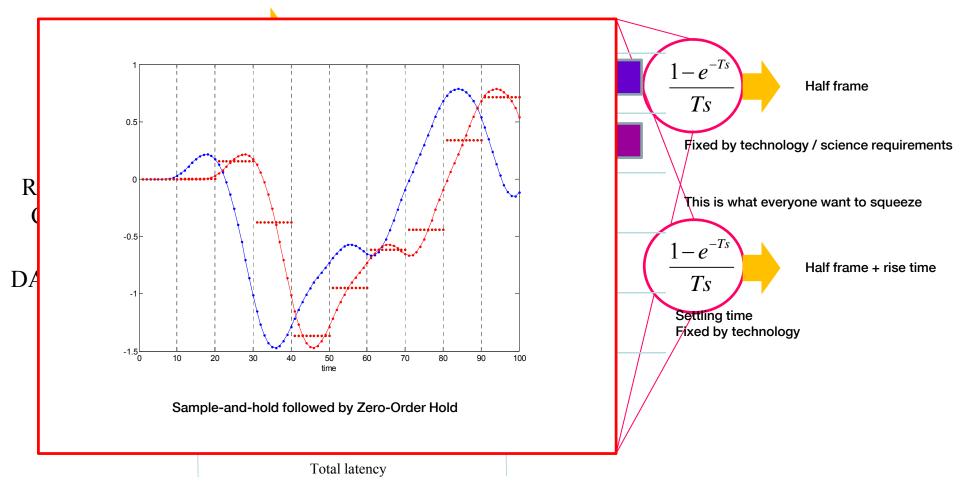
- RTC Latency: nominal delay associated to RTC computation (deterministic variable)
- RTC Jitter: difference between nominal and actual time delay associated to RTC computation (random variable)


Impact of Latency and Jitter in AOS performance for ELTs | Dec. 2012

═▐**▋**図**┝**▖╬╕┿╸▋**▋═**┃┨ ═╴**図** ፯ ╬**╏**╘**╜** ╠



# Problem set up (2/4)


#### Timing definitions





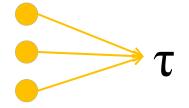
## Problem set up (2/4)

#### Timing definitions



╞╤╴┠╏ 💁 ┝╾ ┼═ ┿╸╏╏ 🚍 ┠║ ╤╸┇╝ 🔤 👬 🕂 💥 🔓




# Problem set up (3/4)

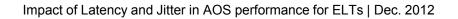
#### Timing definitions: Total latency:

- > T/2: statistical delay introduced by the integration of the wavefront sensor
- ➤ T: readout and digitization of the pixels
- Transmission times between all components
- Computational time (in every component)
- > T/2: statistical delay introduced by the DAC
- Rise time of the amplifier + settling time of the mirror

Minimum latency: Inherent latency: 1 frame delay

- T/2: statistical delay introduced by the integration of the wavefront sensor
- Instantaneous readout
- No communication delay
- > Perfect infinitely powerful real time computer
- T/2: statistical delay introduced by the DAC
- > Perfect amplifier without rise time and perfect mirror without settling time

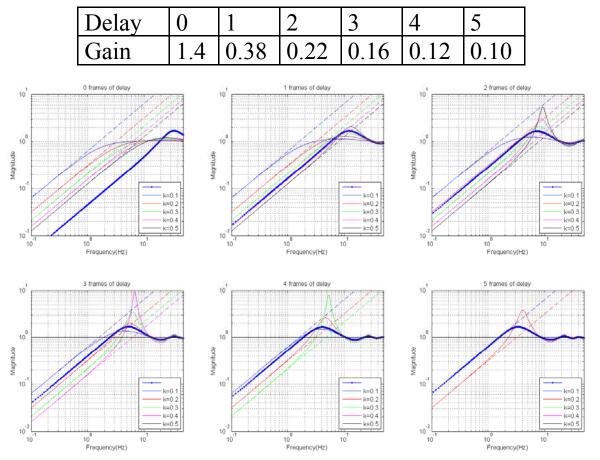



\_ II 🖸 🖿 := +- II = II = 0I = II = := 1 ₩ 1



## Problem set up (4/4)

#### Tools


|                 | Bench                                                                                                                                                                                                                                    | E2E Simulation                                                                                                                                                                                                                 | Control model                                                                                                                                                                        |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Minimum latency | 2 frames                                                                                                                                                                                                                                 | 1 frame                                                                                                                                                                                                                        | 1 frame                                                                                                                                                                              |
| Can simulate    | <ul> <li>Latency as multiple frames</li> <li>Jitter</li> <li>Custom defined exogenous<br/>perturbation signals</li> <li>Cross coupling between<br/>different modes</li> <li>Mis-registration</li> <li>Mirror dynamic response</li> </ul> | <ul> <li>Latency as multiple frames</li> <li>Jitter only as frames dropped</li> <li>Custom defined exogenous<br/>perturbation signals</li> <li>Cross coupling between different<br/>modes</li> <li>Mis-registration</li> </ul> | <ul> <li>Latency</li> <li>Jitter with different<br/>probability distributions</li> <li>Mirror dynamic response</li> <li>Custom defined exogenous<br/>perturbation signals</li> </ul> |
| Cannot simulate | <ul> <li>Sub-frame latency</li> <li>Sub-frame jitter</li> <li>(not yet)</li> </ul>                                                                                                                                                       | <ul> <li>Mirror dynamic response</li> <li>Sub-frame jitter</li> <li>Sub-frame latency</li> </ul>                                                                                                                               | <ul> <li>Cross coupling between<br/>different modes</li> <li>Mis-registration</li> </ul>                                                                                             |

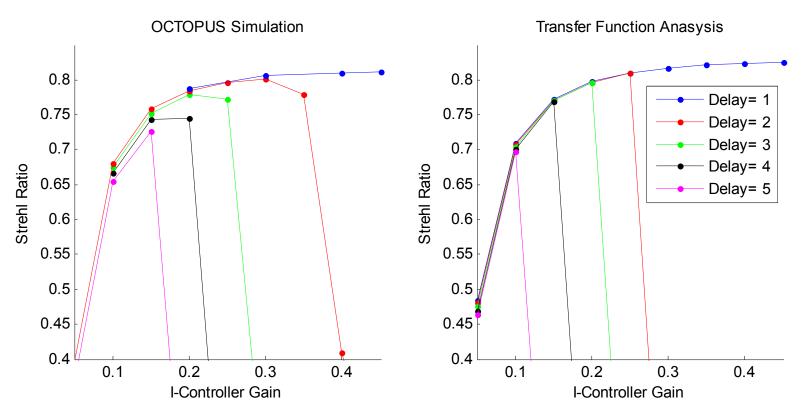




### Impact of the latency

■ More delay → smaller gain with same margin → smaller bandwidth

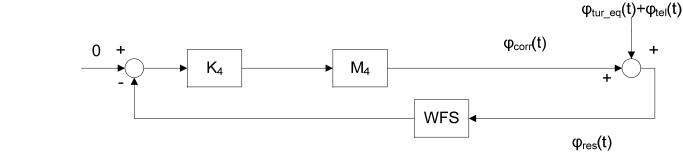


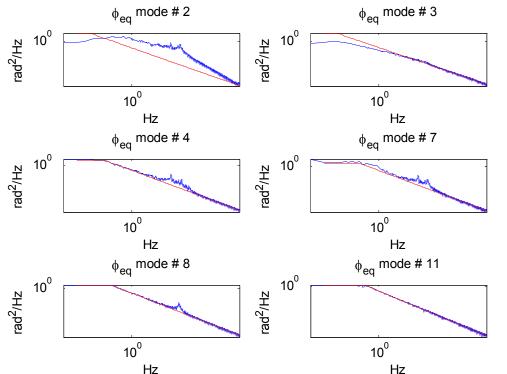

The performance variation (residuals) depends on the input PSD

Impact of Latency and Jitter in AOS performance for ELTs | Dec. 2012



## Validation of analysis method

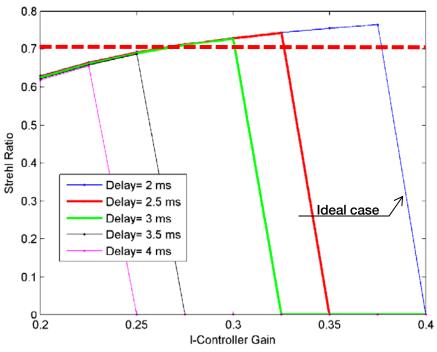

#### Comparison with E2E case




Analysis confirms that the control model captures the most important contributors to system performance



### **E-ELT AO Loop**



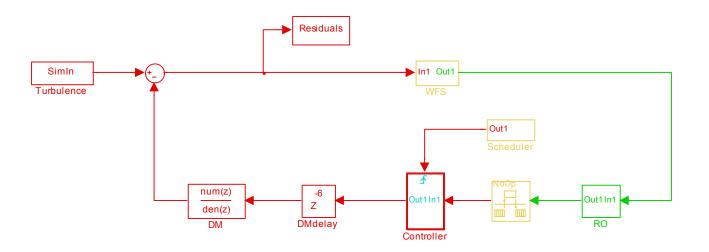



- AO loop target: reject atmospheric + telescopeinduced perturbations
- M5 removes low frequency large stroke perturbations
- AO loop (driving M4 mirror) to cope with remaining perturbations



## **Latency Analysis Results**




- Median ELT seeing conditions
- High flux
- Specification: 70% Strehl
- Achieved
  - > 72% (1ms Latency)
  - 74% (0.5ms Latency)

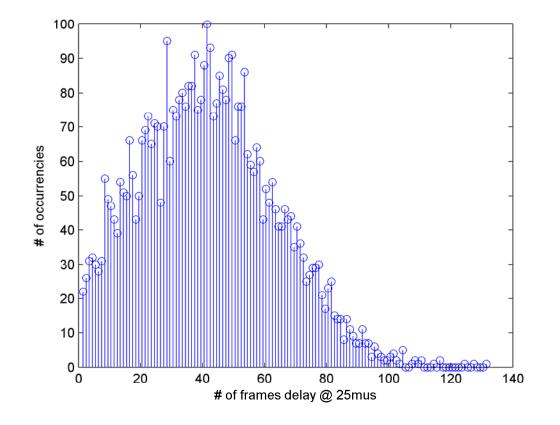
Impact of Latency and Jitter in AOS performance for ELTs | Dec. 2012

- T/2 WFS: included in model
- T readout: assumed 2ms
- Transmission times between all components
  - To be considered in given delay
- Computational time (in every component)
  - 150us in Mirror Controller included
    - Requirement: 1ms for the RTC
      - WPU included in RTC
- T/2 DAC: included in model
- Rise time of the amplifier + settling time of the mirror
  - Ideal amplifier, settling time included in model
- M4 expected response fitted from VLT/DSM measurements
- Gain achieving maximum specified robustness margin (6dB Modulus margin)





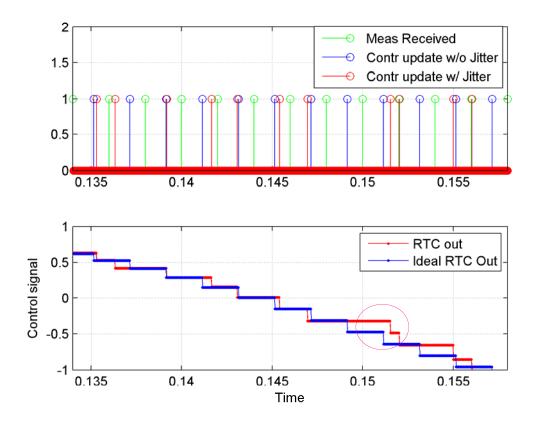



- Controller output update executed at randomly variable time instants
- Can simulate violation of Hard-RT constraints producing dropped measurements
- Can use different jitter probability distributions
- Low impact on simulation time (10 sec ELT simulation performed on a laptop within 15mins)

Impact of Latency and Jitter in AOS performance for ELTs | Dec. 2012

═**╏║図**┣╸╬╡┿╴║║**═**║║═╴║║┱╴╬╴┖╝╫╴╚



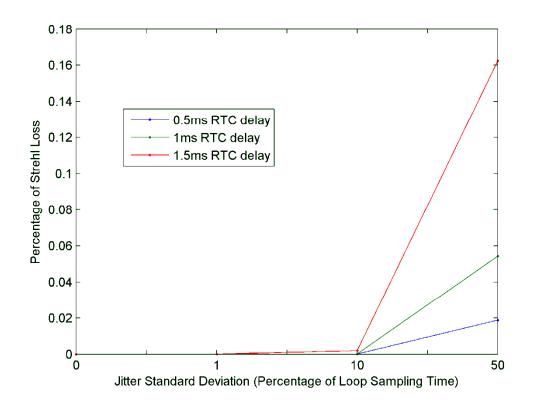

# **Jitter Simulations (2/2)**



- Example: jitter normally distributed around mean latency
- Tail probability < mean cut to keep causality
- Other distributions can be easily simulated (e.g. uniform)
- Jitter+Latency can be > than integration time



# **Jitter Simulations (2/2)**




- Ideal (no jitter) vs. real-life controller
- Time line:
- 1. received measurement event (green)
- controller output update (blue w/o jitter, red w/ jitter)
- Missed frames are also simulated

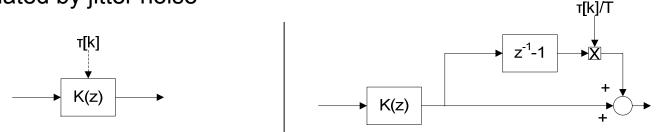
╶═╴▋▋ 🖾 ┝━ ╬╡┿─ ▋▋〓〓 ▋▋ ═╸┇┫ 🖭 🗮 🖬 🗮



### **Results of Jitter Simulations**



- Latency requirement for prototype ELT WFRTC
  - > 20µs (1% sampling time)
- Assumed optimal gain configurations computed for latency study


- Jitter up to 1% → fully negligible
- @10% Jitter some (small) performance degradation observable

═╴▋▋ 💁 ▙▖ #═ ┿╸▋▋ ══ ▋▋ ═╴ ◙ 🖭 ╊▋ 🛨 洲╬╶╚┉



# More insight into Jitter Results

- Control Jitter:
  - > Multiplicative perturbation in output to the controller
  - Weighted by derivative-like action
  - Modulated by jitter noise



- Jitter induced perturbation expected to increase if:
  - ➤ Exogenous signals with higher power @ high freqs → interaction with measurement noise/ higher order systems
  - ➢ High controller gain @ high freqs → more sophisticated control algorithms are considered.

═ ▋▌ 🙆 ▙▖ ▓▌┿╸▋▌ 〓 ▋ ▋ ═╴ 📴 조ႍ ▓▋ 🖬 💥 🕍



### Conclusions

- Set up of methodologies to analyze impact of latency and jitter on AO system performance focusing on realistic operational scenarios
- Analysis proposed includes the major contributors to AO system performance in ELTs
- Results of the analysis to be used to identify best cost effective technology for WFRTC

#### Future work

- Evaluate realistic models of computer jitter
- Extend the analysis beyond SCAO systems
- Evaluate Jitter trade off considering more involved control strategies
- Validate analysis using laboratory facilities

╞╤╴┠║ 💁 ┝╾ ╬╬╶┿╾ ║ ╢ 🚍 ║ ╢ ╦╴ 🖬 🖭 💥 🗀