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The importance of AGN

QUDAGN mark the most powerful episode in the life of a
galaxy, and can have a profound impact on its evolution.
QUDAGN are bright = easy to find out to high redshifts.

== AGN are more common at z~2 than at z=0, making
them powerful probes of the high-z Universe.
== AGN emission can outshine the host galaxy.
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AGN and stellar emission across the SED

Restframe Wavelength (um)
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"Data from XMM, HST, Keck, y
VLT, Subaruy, Spitzer, JCMT and
10 radio telescopes.

42356 @ 2=25
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AGN and stellar emission across the SED

Restframe Wavelength (um)

10-4 1073 0.01 0.1 1 1 100 1000 104 10° 10¢
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"Data from XMM, HST, Keck, el : :
VLT, Subaru, Spitzer, JCMT and
£10 radio telescopes.

 4C23.56 @ z=25

*Hot + cold dust (mid+far-IR)

*Syncnrotron core;jobes (radio)
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Surveys for Type 1 AGN
e Spatially unresolved at all A, except radio.
e >90% selected by optical colour (UV excess or

Lyman break).

e UKIDSS and VISTA making important contributions,
especially at the highest redshifts.

 Studies of host galaxies require AO + detailed PSF
subtractlon (e g SINFONI/NACO)

Follow—up photometry of ULAS J1120+0641:
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Surveys for Type 2 AGN

e Torus acts as natural coronograph, allowing a direct view
of the host galaxy.

e First found as identifications of bright radio sources in
the 1960s (when ESO was founded!).

e Now also selection in optical, mid-IR and X-ray.

e In low-luminosity AGN, line ratios are needed to

separate AGN and starbursts. [~ T T L

. log ([O1I] A500%7/HR)

1 [ 1 1 1 1 l 1 1
-1 -0.5
log ([NII] A6583/Ha)




Surveys for Radio Loud Type 2 AGN

e Radio galaxies were the most distant galaxies known till
the mid-1990s.

e ldentification and optical spectroscopy very expensive.
e Additional selection techniques were developed to
identify the most distant radio galaxies.

e Most successful technique: ultra-steep spectrum.

_2llllllllllll

e Uses concave shape of
radio spectrum.
* k-correction shifts

|
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o

steeper part to observed

wavelengths.
e ~2/3 of sources @ z>2.

Spectral Index
\
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Identification & redshift determination

e Host galaxy identification |
most efficient in K-band.
e K magnitude is a good
redshift indicator. b

e NTT key programme in mid = S | )
1990s provided 64 redshifts. ~ Lilly & Longair 1984

05 1
Redshift (z)

1

0943-242, z=2.92
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Redshift determination failures

e 30% of radio sources fail
to yield a redshift after a

few hour integrations with
VLT/Keck.

e Either no emission at all,

or featureless continuum.
e Very obscured galaxies!?
Confirmed by high submm
detection rate.

e Future prospect:
molecular/atomic line
spectroscopy with ALMA!
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Blind redshifts from 3mm scans

SPIRE FFTs NGC6240 (Hercules KP, PI: P. Van der Werf)
—

Frequency [GHz]

® 84-115 GHz covered in
5 tunings.

e Small 1.7<z<2 redshift

desert.

e Multiple lines for z>3.

* No prior identification

e Only 20m|n with ALMA!!
Weil3 + 2012, to be submitted
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Stellar masses of radio galaxies

Rocca- Volmemnge + 2004 Seymour + 2007, De Breuck + 2010
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® Observed K-z relation suggests high stellar masses.
® Confirmed by Spitzer observations, sampling the peak of the

ste

" Maj

" St

lar population when AGN contributions are lowest.
ority of RGs have masses ~3x10M Mgn.
| ongoing star formation revealed by bright submm emission.



Why radio galaxies are ideal laboratories
to study AGN feedback

They have already Needs a strong feedback

accumulated most of their :> process to stop them
stellar mass, but are still growing for good:

forming stars at z>3. powerful radio source?




Black hole masses &
Eddington ratios

* BLR are usually completely
obscured in type IT AGN.

e 20% of z>2 RGs show nuclear
I B “* broad-line regions in SINFONI data.

e MgH a few 10° Msun |

(higher inclination may half Mgw) Radio galaxies at z~2

° Appears Sllgthy OffseT (Nesvadba et al. 2010B

from local M - M -
. bulge = IViBH 2~6 QSOs?
relation. Walter et al. (2004)

* Bolometric luminosity at
few % Eddington, lower

than other populations  °
. .. ‘ ' z~2 starbursts?
with similar MzH <> Alexander et al. (2008

- nearing end of active
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Transiting objects from "Quasar” to "Radio” mode?

*Calculate Lkin using Willott et al 1999 (A) and Birzan et al 2008 (A) relations.

*Transition from "Quasar” to "Radio” mode feedback marks the end of the
phase of active growth.

" N R,

following Merloni & Heinz (2008)
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“The Cocoon model ”
Fairly good (basic) understanding of how jets may work

radio jet inflates
mechanical

power

“cocoon”
hot overpres-
surized gas,

accelerates

In agreement with hyx
models of radio jets

(e.g. Sutherland & Bicknell
Krause 2007)

strongest interactions w/

young radio sources
(e.g., Holt et al. 2008)

dissipation times of gas
kinetic energy ~ jet lifetime
(Nesvadba et al. 2010a)

—

embedded cold/

loud
mvc\)ll?a';rt:}ai Ztlcj)m?c, - ? ? ? ?

T~10-10* K

MRC0156-252
z=2.0




Ionized gas halos with sizes comparable to radio jets

(~50 radio galaxies at z~1.5-3.5 with NIR-IFU data
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Are these really outflows?

*Laing-Garrington effect: most depolarised radio lobe is
receding as it passes through longer line-of sight.
*Consistently indicate bipolar outflows with velocity offsets
~ 1000 km/s and V~1000 km/s (too large for rotation).
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Energetics and other constraints

offset [kpc|

T Characteristic: blue / redshifted bubbles
| velocities - « velocity offset 1000 km s™' (>> rotation)
* Line widths ~ 1000 km s

Gas extends along jet axis to R >> Rstars

 only extended gas where extended radio sources
» aligned with radio source (with 2 exceptions)

offset [arcsec)
offset [kpc)

M ~10°°M_ ~M

gas,ion sun gas, mol
R\ Wt | * Ha flux, extinction, electron densities measured
offset [arcsec) ’ . starburst galaxies: M__ /M.~ 1023

W N = O - N W a o
1

mol

offset [kpc) )
20 10 0 10 : 3 l Ekin,gas ~ 1059 60 erg
’| Line widths , 1% » ~ binding energy of a massive host galaxy
{30 * 0.1 -0.2 % of the rest-mass energy equivalent of the SMBH

* 1-10% of the jet power

420

410

T, utiow FEW X 107 yrs ~ AGN lifetime
« > characteristic time of a starburst ~ 108 yrs

offset [kpc]

40

<-10

120 Expected characteristics of AGN-driven winds quenching
4 30 intense starbursts in massive high-z galaxies

offsel [arcsec)



The environments of distant radio galaxies

* Fields of radio galaxies statistically overdense in terms of
evolved and star-forming galaxies.

old galaxies: [3.6]-[4.5]>-0.1 Star-forming galaxies at 24um
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Ly-alpha emitters around distant RGs

* VLT large programme in 2001-2003 found that 6 out of 8
fields at 2<z<5.2 are statistically overdense.
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Dust obscured companion galaxies

* Dusty companions 10-50 kpc from the AGN are commonplace.

* Can be completely obscured in the optical.

* ALMA will be able to identify & spatially resolve these.

pror - ] A -’ = ' |

Ivison + 2012

Nesvadba + 2009




Summary

* AGN have been pointers to high redshift galaxies for as long as
ESO has been around.

* AGN host galaxies are found at the top end of the mass scale.
* The role of the AGN in Galaxy formation is now recognised.
* Feedback from powerful radio jets may end the formation epoch.

ESO past and future role

* NTT and VLT played a major role in finding and studying AGN.

* 3D studies of AGN and their environments are essential to study
feedback. KMOS and MUSE will provide the first wide-field view.
* Many AGN hosts and their companions are dust obscured.
Redshift determinations will require ALMA 3mm band scans.

* The combination of ALMA + VLT is unique to obtain a complete
view of AGN and the interaction with their environments to study
the role of merger events.




