# The AGN-Galaxy connection (in type 2 AGN)

#### **Carlos De Breuck (ESO)**





# The importance of AGN

AGN mark the most powerful episode in the life of a galaxy, and can have a profound impact on its evolution. AGN are bright  $\Rightarrow$  easy to find out to high redshifts.

AGN are more common at z~2 than at z=0, making them powerful probes of the high-z Universe.

AGN emission can outshine the host galaxy.



Richards 2006 Fan + 2005

## AGN and stellar emission across the SED



## AGN and stellar emission across the SED



# Surveys for Type 1 AGN

- Spatially unresolved at all  $\lambda$ , except radio.
- >90% selected by optical colour (UV excess or Lyman break).
- UKIDSS and VISTA making important contributions, especially at the highest redshifts.
- Studies of host galaxies require AO + detailed PSF subtraction (e.g. SINFONI/NACO).



# Surveys for Type 2 AGN

- Torus acts as natural coronograph, allowing a direct view of the host galaxy.
- First found as identifications of bright radio sources in the 1960s (when ESO was founded!).
- Now also selection in optical, mid-IR and X-ray.
- In low-luminosity AGN, line ratios are needed to separate AGN and starbursts.

Kauffman + 2003



## Surveys for Radio Loud Type 2 AGN

- Radio galaxies were the most distant galaxies known till the mid-1990s.
- Identification and optical spectroscopy very expensive.
- Additional selection techniques were developed to identify the most distant radio galaxies.
- Most successful technique: ultra-steep spectrum.



- Uses concave shape of radio spectrum.
- k-correction shifts
  steeper part to observed
  wavelengths.
- ~2/3 of sources @ z>2.

De Breuck + 2000-2004

# Identification & redshift determination



# Redshift determination failures

- 30% of radio sources fail to yield a redshift after a few hour integrations with VLT/Keck.
- Either no emission at all, or featureless continuum.
- Very obscured galaxies?
  Confirmed by high submm detection rate.
- Future prospect: molecular/atomic line spectroscopy with ALMA!



De Breuck + 2001

# Blind redshifts from 3mm scans



# Stellar masses of radio galaxies

#### Rocca-Volmerange + 2004

#### Seymour + 2007, De Breuck + 2010



- Observed K-z relation suggests high stellar masses.
- Confirmed by Spitzer observations, sampling the peak of the stellar population when AGN contributions are lowest.
- Majority of RGs have masses ~3×10<sup>11</sup> M<sub>sun</sub>.
- Still ongoing star formation revealed by bright submm emission.

# Why radio galaxies are ideal laboratories to study AGN feedback

They have already accumulated most of their stellar mass, but are still forming stars at z>3.



Needs a strong feedback process to stop them growing for good: powerful radio source?





• MBH a few 10<sup>9</sup> MSun (higher inclination may half  $M_{BH}$ ) Appears slightly offset from local Mbulge - MBH relation.

 Bolometric luminosity at few % Eddington, lower than other populations with similar MBH  $\rightarrow$  nearing end of active

olack hole

growth phase?

# Black hole masses & Eddington ratios

• BLR are usually completely obscured in type II AGN. • 20% of z>2 RGs show nuclear broad-line regions in SINFONI data.



## Transiting objects from "Quasar" to "Radio" mode?

- •Calculate  $L_{kin}$  using Willott et al 1999 ( $\blacktriangle$ ) and Bîrzan et al 2008 ( $\Delta$ ) relations.
- Transition from "Quasar" to "Radio" mode feedback marks the end of the phase of active growth.



# "The Cocoon model"

### Fairly good (basic) understanding of how jets may work



### Ionized gas halos with sizes comparable to radio jets





# Energetics and other constraints



#### **Characteristic: blue / redshifted bubbles**

- velocity offset 1000 km s<sup>-1</sup> (>> rotation)
- Line widths ~ 1000 km s<sup>-1</sup>

#### Gas extends along jet axis to R >> R<sub>stars</sub>

- only extended gas where extended radio sources
- aligned with radio source (with 2 exceptions)

 $M_{gas,ion} \sim 10^{10} M_{sun} \sim M_{gas, mol}$ 

- H $\alpha$  flux, extinction, electron densities measured
- starburst galaxies:  $M_{mol} / M_{ion} \sim 10^{2-3}$

#### $E_{kin,gas} \sim 10^{59-60} \text{ erg}$

- ~ binding energy of a massive host galaxy
- 0.1 0.2 % of the rest-mass energy equivalent of the SMBH
- 1-10% of the jet power

#### T<sub>outflow</sub> few x 10<sup>7</sup> yrs ~ AGN lifetime

• > characteristic time of a starburst ~  $10^8$  yrs

Expected characteristics of AGN-driven winds quenching intense starbursts in massive high-z galaxies

# The environments of distant radio galaxies

• Fields of radio galaxies statistically overdense in terms of evolved and star-forming galaxies.



Galametz + 2012

Mayo + 2012

# Ly-alpha emitters around distant RGs

• VLT large programme in 2001-2003 found that 6 out of 8 fields at 2<z<5.2 are statistically overdense.





# Dust obscured companion galaxies

- Dusty companions 10-50 kpc from the AGN are commonplace.
- Can be completely obscured in the optical.
- ALMA will be able to identify & spatially resolve these.





- AGN have been pointers to high redshift galaxies for as long as ESO has been around.
- AGN host galaxies are found at the top end of the mass scale.
- The role of the AGN in Galaxy formation is now recognised.
- Feedback from powerful radio jets may end the formation epoch.

# ESO past and future role

- NTT and VLT played a major role in finding and studying AGN.
- 3D studies of AGN and their environments are essential to study feedback. KMOS and MUSE will provide the first wide-field view.
- Many AGN hosts and their companions are dust obscured. Redshift determinations will require ALMA 3mm band scans.
- The combination of ALMA + VLT is unique to obtain a complete view of AGN and the interaction with their environments to study the role of merger events.