
Synergies between ground- and spacebased observatories

Bruno Leibundgut (ESO)

VISTA Variables in the Via Lactea VVV

Outline

- Ground vs. Space
 - > multi-wavelength astronomy
- Science topics
- Poster Child
- ESO-ESA coordination

Current facilities

Why would you not use all resources?

Full coverage of electro-magnetic spectrum

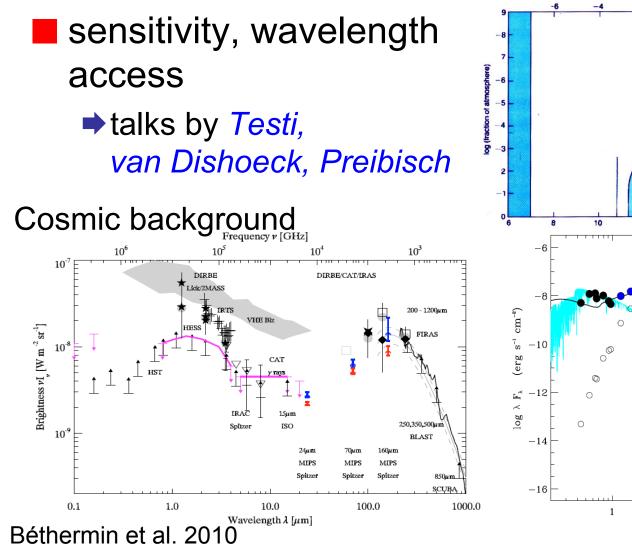
- > 19 orders of magnitude in wavelength or frequency
 - meter to attometer (10^{-18}) or MHz to YHZ (yotta 10^{25})

Electro-magnetic radiation	Current facilities	Future facilities
UHE	MAGIC, HESS, VERITAS	СТА
γ-rays	INTEGRAL, FERMI	
X-rays	XMM-Newton, Chandra, Swift, Rossi/XTE, Suzaku	eROSITA, ASTRO-H
UV	GALEX	
optical	ground-based observatories, HST, CoRoT, Kepler	ELTs, Gaia
IR	ground-based observatories	ELTs, JWST, Euclid
mid-IR	ISO, SPITZER, AKARI	
100µm	HERSCHEL, PLANCK, SOFIA	
sub-mm/mm	IRAM, APEX, CARMA, JCMT, SMA, ALMA	ALMA, CCAT
cm/m	radio observatories, LOFAR	SKA

"Messengers"

non-EM observatories	Current facilities	Future facilities
cosmic rays	Auger	
neutrinos	IceCube	KM3NET

Multi-wavelength astrophysics - Garching, 6 September 2012



Exploring synergies

Ground vs. Space

Multi-wavelength astrophysics - Garching, 6 September 2012

log (photon energy, eV) 140 130 120 110 DKCha Class II WFI@ES02.2m 2MASS Spitzer Herschel SEST 1.2-1.3 mm $^{\lambda}$ (µm) Loredana Spezzi

Ground vs. Space

stability

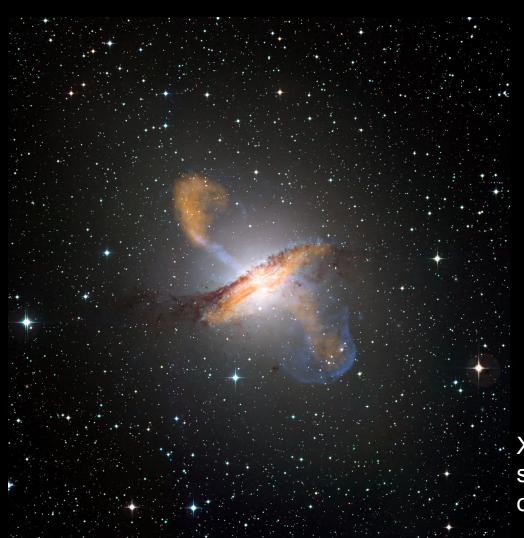
- talks by Udry, Bouchy
- ➢ photometric
 - CoRoT, Kepler
- > spectroscopic
 - HARPS
- sky coverage
 - ➢ all sky
 - COBE, WMAP, Planck, Gaia
- accessibility
 - ➢ repairs, upgrades

image quality, confusion

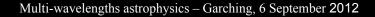
- talks by Genzel, Rejkuba, Piotto, Tolstoy, Neumayer
- HST vs. optical ground
- Ionger wavelengths vs. optical ground

Ground vs. Space

- spectroscopic redshifts, internal dynamics
 - mostly optical domain, but ALMA!
 - multiplex
 - talks by Fynbo, Combes, Lilly, Tacconi, De Breuck, Föster Schreiber, Mellier, Franx, Hammer, Petitjean, Murphy, Cristiani
- positional accuracy
 - atmospheric issues
- direct access

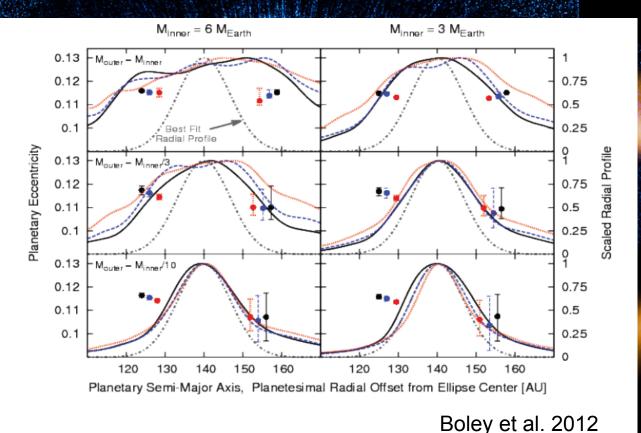

COSt

- solar system missions
- ➡ talks by Sicardy, Vernazza



Multi-wavelength

X-rays – Chandra sub-mm APEX optical 2.2m



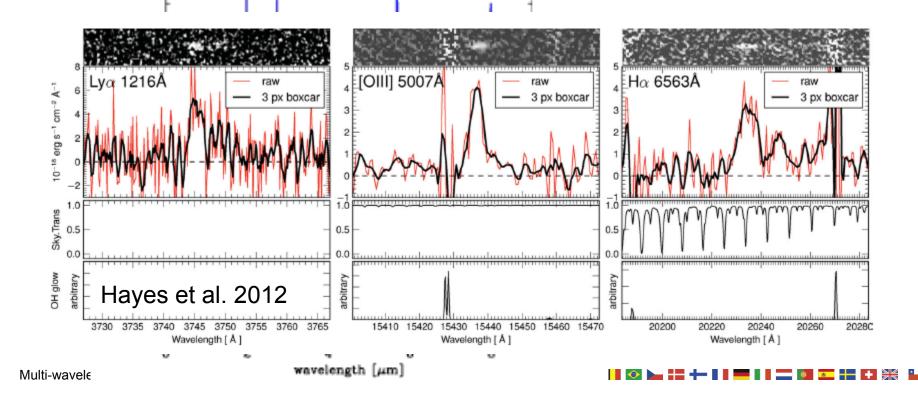
HST/ALMA/Spitzer/ATCA

Dust ring around Fomalhaut

Hints for two planets → a few Earth masses

High-redshift galaxies

GOODS/CDF/COSMOS


- ➤ redshift pushes relevant optical features into the IR → HST imaging required for photometric redshifts
- Follow-up with VLT/Keck spectroscopy
 - spectroscopic redshifts, spectral analyses
- CO and [C I] detections with mm telescopes (APEX, JCMT, IRAM, ALMA)

High-redshift galaxies

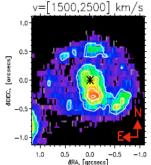
Importance of spectroscopy

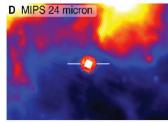
- galaxy with photometric redshift 9.6<z<12</p>
- > X-shooter spectrum: z=2.08

Other topics

- CoRoT, Kepler, Cheops
 - use photometric stability for transiting planets
 - Follow-up with radial velocity curves to characterise the planets (or vice versa with CHEOPS)
- XMM-Newton Cluster search
 - redshift determinations with ESO telescopes
- GRBs
 - detection in γ-rays, localization with X-rays, follow-up/ characterisation with optical telescopes (redshifts!)
- Distant supernovae
 - regular observing pattern with HST (light curves), (galaxy) redshifts with 8m telescopes

Multi-wavelength astrophysics – Garching, 6 September 2012


= || 🖸 🛌 |= += || = || = || = 🔟 🔤 💶 🖽 😹 🛀



SN 1987A

- Gift for ESO's 25th anniversary
 Observed at all wavelengths
 HST
 - COS, STIS, WFPC1/2, NICMOS, WFC3, ACS, FOC
 - > VLT
 - ISAAC, FORS, UVES, SINFONI, NACO, VISIR
 - Rosat, Chandra, XMM-Newton
 - > Spitzer, Herschel
 - ≻ APEX, ALMA, ATCA

Optical, X-rays and Radio

GEMINI 12 μm

ATCA

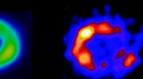
HST

1996

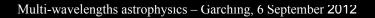
CHANDRA

1999

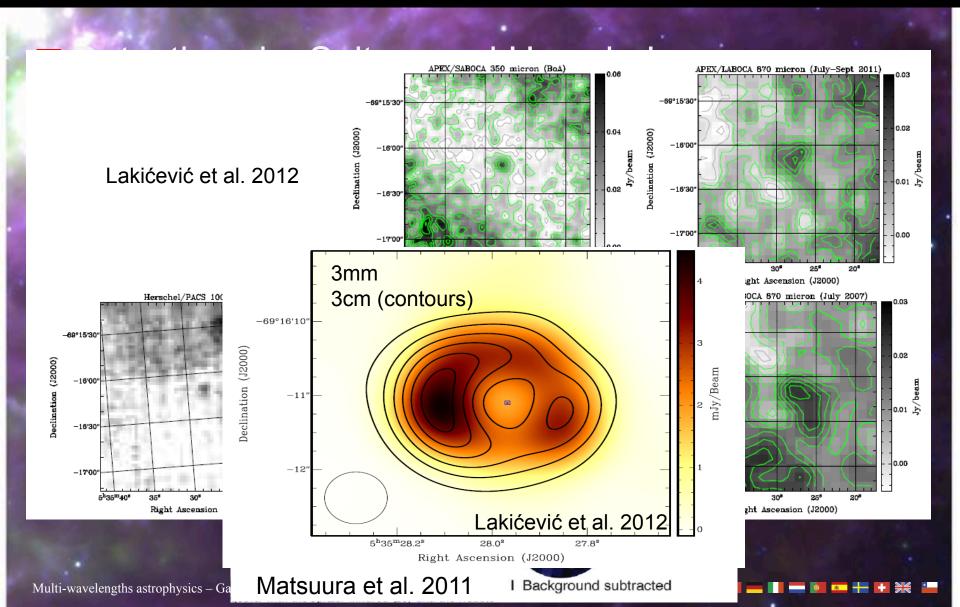
NACO H-band Danziger & Bouchet 2007


2001

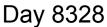
2003

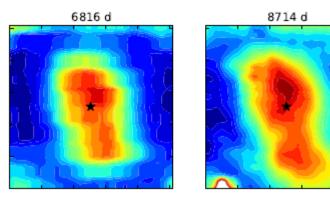


2005


Park et al Manchester et al

Exciting developments 2011/12


Space and ground synergy

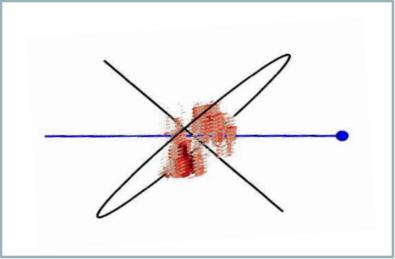

Different morphologies Optical: X-ray heating from ring collision IR: mostly still radioactive heating

 F255W
 F336W
 F439W

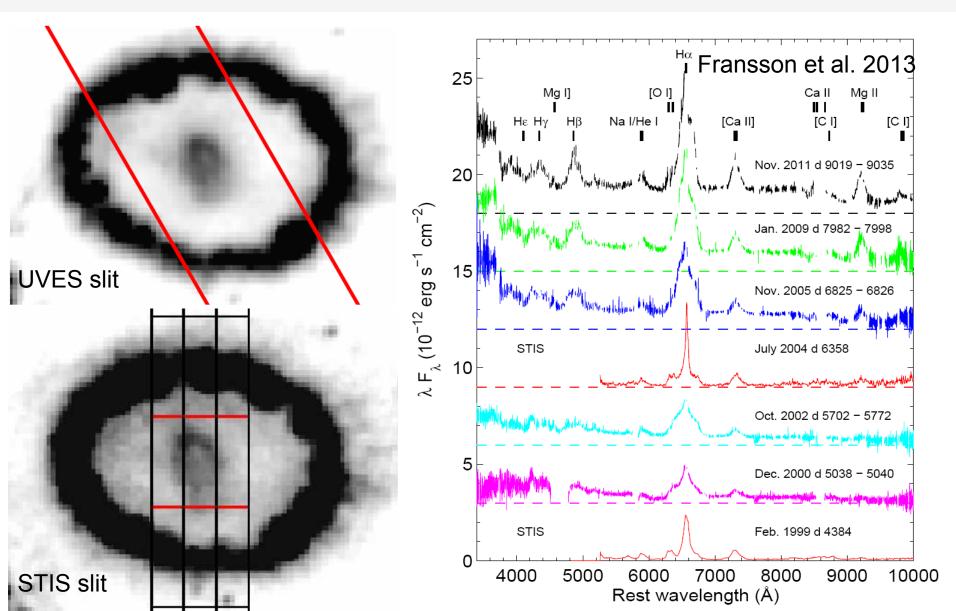
 F555W
 F675W
 F814W

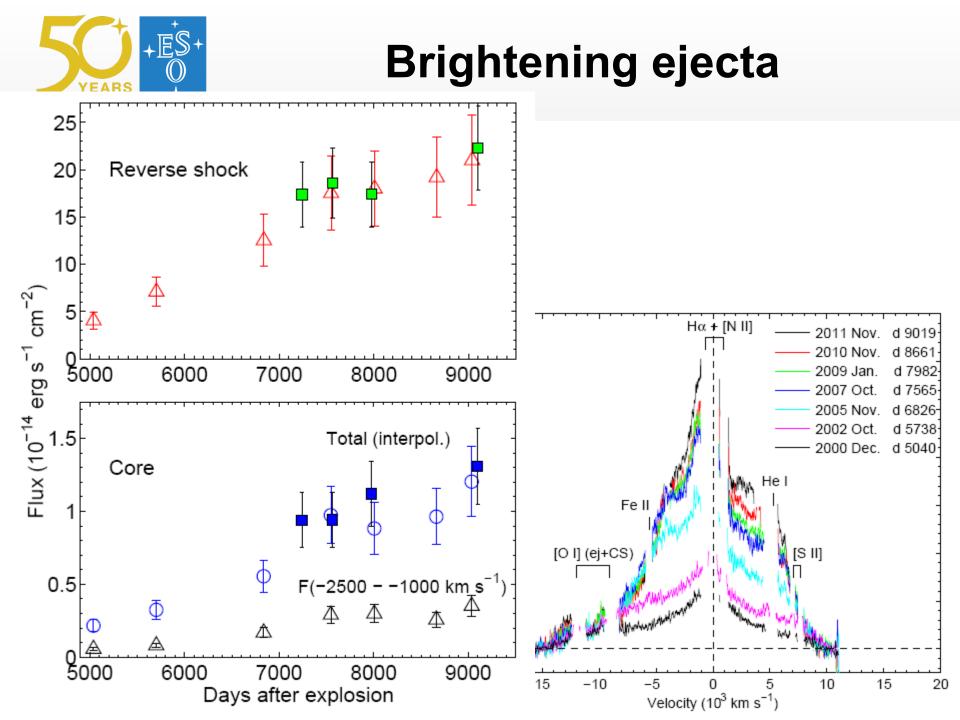
Day 5012

 $SINFONI-1.644 \mu m$ [Si I] and [Fe II]

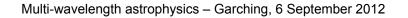

Larsson et al. 2013

Multi-wavelength astrophysics - Garching, 6 September 2012


Distribution of the inner ejecta


- Clumpy distribution of the inner ejecta
- Inner ejecta is increasing in brightness since day 5000
- Emissivity is not directly linked to matter distribution any longer
 - > different heating mechanisms

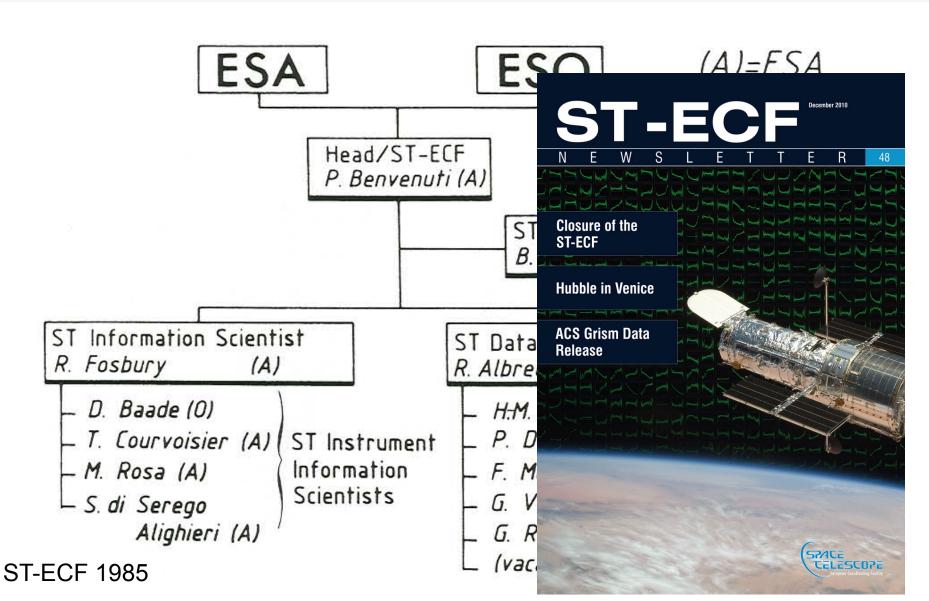
Combined analysis



The complex SN 1987A

- Inner ejecta
 - > now heated by X-rays from the reverse shock
 - reverse shock
- shocked ring gas
- recombining ring
- dust
 - Iocation unclear
 - inner ejecta? ring? reverse shock?

ESO-ESA coordination


ST-ECF

- > 26 years (1984-2010) of daily interaction between ground and space (HST)
- direct link to the HST project
- strong impact on VLT operations model
 - lessons learnt, good practices
- instrument modelling and calibration
 - e.g. UVES wavelength calibration
 - evaluation of the slitless spectroscopy capabilities for EUCLID
- Science Archive
- Coordination activities
 - GOODS
- Outreach activities

ESO-ESA collaboration

- Regular (bi-annual) meetings
- Information exchange
- Commissioned the working group reports
 - coordinated by the ST-ECF

Continue European HST outreach at ESO
 XMM-Newton/VLT joint observing programmes (e.g. CfP 91)

Support of ESA missions

Hipparcos

PROFILE OF TWO KEY PROGRAMMES

Messenger 56, June 1989

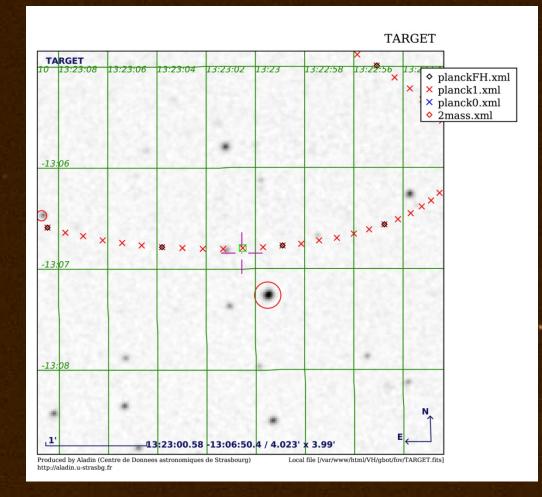
Complementary Astrophysical Data for Hipparcos Stars

(1) Astrophysical Fundamental Parameters of Early-type Hipparcos Stars

M. GERBALDI, Institut d'Astrophysique, Paris, France A. GÓMEZ, S. GRENIER, C. TURON, Observatoire de Paris, Meudon, France R. FARAGGIANA, Università di Trieste, Italy ESO 1.5m

(2) Radial Velocities of Southern Late-type Hipparcos Stars

M. MAYOR, A. DUQUENNOY, M. GRENON, Observatoire de Genève, Switzerland C. TURON, F. CRIFO, Observatoire de Paris, Meudon, France M. IMBERT, E. MAURICE, L. PREVOT, Observatoire de Marseille, France J. ANDERSEN, B. NORDSTRÖM, Copenhagen University, Denmark H. LINDGREN, ESO


Ground-based support for Gaia

- Calibration observations obtained with ESO telescopes over the years through regular proposals
 - most data received and analysed
- Gaia alerts for transient objects
 - PESSTO public spectroscopic survey
- Accurate satellite position required for astrometric goals
 - explore whether ESO telescopes could support this activity
 - test observations of Planck have been taken (VST)

CHIP 12 eso ccd #84

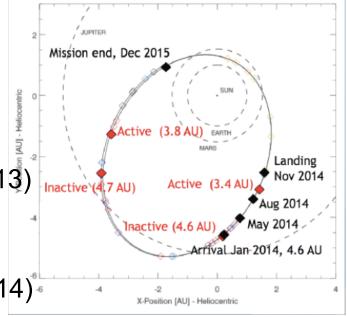
OMEGA.2012-04-04T05:41:47.818

PLANCK

Ground-based support for Gaia

Spectroscopic follow-up

- already started with Gaia-ESO public spectroscopic survey
- MOS science cases have a focus on Gaia follow-up
- Agreed that this should be driven by the scientific community



Ground-based support for Rosetta

Important observations required for the approach of satellite to 67P/Churyumov-Gerasimenko

- ESO telescopes ideally placed
- could include nightly monitoring for activity
- ≻ 'Wish list':
 - astrometric observations (starting in 2013)
 - photometric and spectroscopic monitoring (through 2014)
 - IR observations during landing (Nov 2014)^{*}
 - follow-up during perihelion (until April 2015)

Ground-based support for Euclid

Photometry

mostly covered by DES, PanSTARRS-2 and KIDS

> some 2500 □° remain

Spectroscopy

> needed for calibration of photo-z's

ESA and ESO should consider organising a joint workshop to explore the synergies and needs

ESO-ESA coordination

Near-Earth objects

- characterisation of potentially hazardous near-Earth objects
- part of UN activity (within the UN Committee for Peaceful Uses of Outer Space)
- coordinate the activities between ESA and ESO
 - establish relevant groups within both organisations

ESO-ESA coordination

Driven by the community

- > workshops
- > working groups
- ➢ proposals
 - missions, instruments
 - observing projects

Summary

Astrophysics is happening everywhere

- Currently access to essentially the full electromagnetic spectrum
- Wavelength chauvinism is on the decline
- Other messengers are catching up
- Experiments are now covering all bases from the design phase

➢ GOODS, COSMOS, EUCLID, CHEOPS

Observatories must see themselves as partners providing unique instruments in an orchestra – the individual astronomer is the conductor and chooses the tune

Multi-wavelength astrophysics - Garching, 6 September 2012