Spectroscopy of Blue Supergiants in the Disks of Spiral Galaxies: Metallicities and Distances

Rolf Kudritzki

UNIVERSITY OF HAWAII . INSTITUTE FOR ASTRONOMY

ACDM-universe → metallicity of galaxies depends on their mass metal-rich

M81

metal-medium

NGC 300

metal-poor

WLM

Lequeux et al., 1979, A&A 80, 155

Fig. 4. Observed heavy element abundance, Z, versus total mass for the compact and irregular galaxies under consideration. Filled circles are objects with known mass; open circles are lower limits to the total mass for I Zw 18 and II Zw 40 (for which we adopted 9.9 $10^8 M_{\odot}$). Solid line, least-squares fit for all galaxies (log M_{tot} =8.18+229 Z). Dashed line, least-squares fit for galaxies of known mass (log M_{tot} =8.48+187 Z)

the pioneering paper

data from HII regions using strong line methods

Tremonti et al., 2004, ApJ 613, 898

50,000 starforming galaxies with Sloan spectra

Rosetta stone to understand galaxy formation and chemical evolution!

mass-metallicity relationship

Tremonti et al., 2004, ApJ 613, 898

However.

Something must be wrong....

It's based on very simplified emission line analysis....

mass-metallicity relationship

Tremonti et al., 2004, ApJ 613, 898

mass - metallicity relationship

depends crucially on strong line method calibration

supergiant stars will come to rescue !!!!

supergiants - objects in transition

Brightest normal stars at visual light: $10^5..10^6 L_{sun}$ -7 $\ge M_V \ge -10$ mag

 $t_{ev} \sim 10^3$ yrs L, M ~ const.

ideal to determine

- chemical compos.
- abundance grad.
- SF history
- extinction
- extinction laws
- distances of galaxies

nearby supergiants

in Orion

1000 Lyrs away

Rigel

pilot study

2008, ApJ 681, 269

Study of metallicities

NGC300/star21

Spectral window 4497-4607Å

Spectral window 4497-4607Å

Stellar metallicity gradient in NGC300

Extragalactic Stellar Spectroscopy

Stellar vs. HII metallicity gradient

Kudritzki et al., 2008, ApJ 681, 265

strong lines and auroral lines

Bresolin, 2009

supergiants

Excellent agreement between auroral lines and supergiants !!

Auroral lines vs. strong lines calibrations - a horror story !!

Kudritzki, Urbaneja, Gazak et al., 2012, ApJ 747, 15

M81 object C20

A mass-metallicity relationship only from stellar spectroscopy

Comparison with HII strong line methods (Kewley & Ellison, 2008)

trust the stars....

despite enormous effort still: $\delta H_0 \sim 10\% \rightarrow \delta w \sim 0.2$

compare Freedman et al., 2001 Saha et al., 2001, Sandage et al., 2006 Mould & Sakai, 2008, 2009ab Riess et al., 2009, 2011, 2012 $\rightarrow \delta H_0 \sim 3\%$ The perennial problem of extragalactic distances

patchy dust extinction

metal-poor

metal-rich

metallicity dependence of distance indicators

Flux weighted Gravity - Luminosity Relationship (FGLR)

Kudritzki, Bresolin, Przybilla, ApJ Letters, 582, L83 (2003)

A supergiant SED

E(B-V) distribution in NGC 300

B&A supergiants in M33 - reddening

Vivian U, Urbaneja, Kudritzki, Jacobs, Bresolin, 2009, ApJ 740, 1120

M81 extinction

Distance too large

HST Key Project

Freedman et al.

Adopted by

1994

Kudritzki, Urbaneja, Gazak et al., 2012, ApJ 747, 15 M81 FGLR

Conclusions and TMT/ELT perspectives

WFOS → quantitative spectroscopy possible down to m_v ~ 24.5 mag

 \rightarrow with objects $M_V \leq -8$ mag

m - M ~ 32.5 mag ~ 30 Mpc possible

chemical evolution studies SF ISM, extinction, extinction laws distances 10 objects per galaxy $\rightarrow \Delta(m-M) \sim 0.1 \text{ mag}$

red supergiants J-band spectroscopy

Brightest stars at infrared light: $-8 \ge M_J \ge -11$ mag

SO50

