Interstellar Constraints on the Cosmic Evolution of Lithium

J. Christopher Howk University of Notre Dame

Nicolas Lehner University of Notre Dame Brian D. Fields University of Illinois Grant J. Mathews University of Notre Dame

To appear in *Nature*, September 6. [arXiv:1207.3081]

Big Bang Nucleosynthesis

Jarosik et al. (2010)

Big Bang Nucleosynthesis

Jarosik et al. (2010)

The lithium problem: Pop II abundances inconsistent with SBBN

The lithium problem: Pop II abundances inconsistent with SBBN

Non-Standard Model physics could explain the Li discrepancy

- **Decay** or **annihilation** of **dark matter** particles inject energetic Standard Model particles into BBN.
 - Hadronic injection: Decay products change n / p ratios or energetic decays spall ⁴He particles.
 - Electromagnetic injection: Excess photons photodisentegrate D or α, providing excess ³He/D.

³ H+ ⁴ He → ⁶ Li+n	³ He+ ⁴ He → ⁶ Li+p	Enhance ⁶ Li
$n+^7Be \rightarrow ^7Li+p$	⁷ Li+p → ⁴ He+ ⁴ He	Suppress ⁷ Li

- Charged dark matter particles **catalyze** BBN
 - Negatively charged particles (X-) create bound particles with baryonic nuclei, reducing Coulombic barriers.

Suppresses ⁷Be (and thus ⁷Li) and/or enhances ⁶Li.

(see Jedamzik & Pospelov 2009)

The idea:

Use *interstellar* Li in low metallicity environments as a probe of the contemporary Li abundance.

While the chemical evolution of Li is complex, there is no worry about time-dependent *in situ* destruction modifying the abundance of Li over time.

Significant uncertainties in the approach are **completely independent** of those affecting stellar measurements.

*This was attempted toward SN1987A using ESO telescopes (Vidal-Madjar et al. 1987; Sahu et al. 1988).

Sk 143 sight line:

*Large H I, H₂ column density *Large columns of neutral metals *Apparent low radiation field

The Observations: *Sk I43 (O9.5 lb): *V* = 12.9 *UVES @ *R* ~ 74,000 *~I night

MCELS: Smith+

Standard BBN and chemical evolution predict the SMC should have $^{6}\text{Li}/^{7}\text{Li} \sim 0.01\text{--}0.02$

Non-standard models predict

```
<sup>6</sup>Li/<sup>7</sup>Li ~ 0.05 – 0.10.
```

At S/N ~ 500, we should detect ⁶Li in the SMC in the latter case.

Interstellar Li in the ELT era

With 10-m class telescopes, this approach is limited to the SMC, LMC, and a single low-redshift damped Lyman- α (DLA) absorber with LMC-like metallicity.

*The planned 30 and 40-m class telescopes have the grasp to extend the search for interstellar Li to more **DLAs**. However, there are several issues:

- I) Li will be redshifted quickly into the NIR.
- 2) The number of bright QSOs with quite low metal DLAs is limited.
- 3) The number of DLAs bearing neutral gas and/or H_2 is VERY limited.

*Studies of the SMC/LMC isotopic ratio and its variations should be straightforward.

Summary

• Measurements of interstellar Li I in low metallicity galaxies will allow us to probe primordial and pregalactic production of Li (including the ⁷Li/⁶Li ratio) in a way that is *independent of the systematics associated with stellar determinations*.

- The first measurement of gas-phase Li in the SMC suggests a current abundance consistent with the BBN value, leaving little room for chemical enrichment. This may favor a low primordial abundance.
- The first marginal measurement of the isotopic ratio in the SMC implies that <40% of the ⁷Li had been produced since the era of Big Bang nucleosynthesis. The ⁶Li/⁷Li ratio may represent the best test on non-standard BBN from the ISM.

