The complete mass function of the young σ Orionis cluster

Karla Peña Ramírez / IAC V.J.S.Bejar(IAC)*M.R.Zapatero Osorio(CAB, INTA-CSIC)*M.Petr-Gotzens(ESO) ESO-Garching * 12 October 2011

Outline

σ Orionis cluster seen by VISTA.
VISTA photometric selection.
Infrared excesses.
Spatial distribution.
Stellar and substellar mass function.

σ Orionis cluster

Age ~3 Myr Distance ~350 pc Av < 0.25 mag $[Fe/H]=0.02\pm0.09 dex$ ~400 members / ~280 confirmed 19 Mo to ~6 MJup

VISTA Orion survey

VISTA/VIRCAM Science Verification Data *ZYJHKs* filters

VISTA Orion survey

VISTA/VIRCAM Science Verification Data ZYJHKs filters

 $Z \operatorname{comp} \sim 22.6 \operatorname{mag}(\sim 6 \operatorname{M_{Jup}}, 3 \operatorname{Myr})$ $J \operatorname{comp} \sim 21.0 \operatorname{mag}(\sim 3.7 \operatorname{M_{Jup}}, 3 \operatorname{Myr})$ $\sim 2800 \operatorname{arcmin}^2$

VISTA photometric selection

VISTA photometric selection

Other VISTA colors

Other VISTA colors

Infrared flux excesses: disks

Infrared flux excesses: disks

Spatial distribution: disks

σ Orionis substellar mass function / literature

Bihain et al. 2009

σ Orionis substellar mass function / VISTA

σ Orionis substellar mass function / VISTA

σ Orionis stellar and substellar mass function / preliminary

σ Orionis substellar mass function / VISTA

σ Orionis substellar mass function: reaching the end of the mass function?

T type dwarfs in σ Orionis by models: 0.004 M_{\odot}

Summary

- VISTA data have covered the entire cluster area.
- New planetary mass candidates doubles the known population in this mass regime. One new T type candidate.
- About 40% of stars and brown dwarfs present infrared excesses at 4.5 and 8.0 μ m. At 4.5 μ m infrared excesses in the planetary mass domain are ~30%.
- There is no spatial segregation between objects with and without disks.
- The spatial distribution of low mass stars and brown dwarfs is similar. The radial profile in the planetary mass regime has a flattening within the first 20 arcmin.
- We present the cluster mass function from 19 M_{\odot} down to ~6 M_{Jup}. We found α =1.9±0.1 (19-0.25 M_{\odot}) and α =0.65±0.2 (0.25 M_{\odot}-6 M_{Jup}).

The complete mass function of the young σ Orionis cluster

Karla Peña Ramírez / IAC V.J.S.Bejar/IAC*M.R.Zapatero Osorio/CAB-INTA*M.Petr-Gotzens/ESO ESO-Garching * 12 October 2011

The complete mass function of the young σ Orionis cluster

Karla Peña Ramírez / IAC V.J.S.Bejar/IAC*M.R.Zapatero Osorio/CAB-INTA*M.Petr-Gotzens/ESO ESO-Garching * 12 October 2011