Cloud Structure and Star Formation

Phil Myers Harvard-Smithsonian Center for Astrophysics

VLMS Conference • Garching, Germany • October 11, 2011

Introduction

Star formation problem

How does nature make

>100 stars in ~ 1 pc in ~ 1 Myr masses from <0.1 to > 100 M_{sun} masses following IMF stars centrally concentrated

from a complex network of filaments, clumps, and cores?

This talk

Filaments, clumps, cores, and their relation to star formation

Ser S cluster (Gutermuth et al 2008)

Outline

Filamentary clouds and formation models

Filaments and cores

The role of cores in star formation

Accretion models

assumption: stars, VLMSs, and BDs are all born from clouds, cores, and disks (but not necessarily in the same way)

Big filamentary complexes

"Nessie" Jackson et al 10 ~80 pc

"South-Nest"

G345.00-022 ~20 pc M09a

G14.2-0.5 ~ 5 pc Busquet et al 11

Small filamentary complexes

Ser S ~ 2 pc

Gutermuth et al 08

Orion A ~1pc

B59~1 pc

Johnstone & Bally 99

Alves et al 10

Morphological types--single filament (Nessie) parallel filaments (G14.2-0.5) network (Vela C South-Nest) hub-filament (CrA). Clusters often found in hubs (M 09a)

Mass distribution—mass in "cloud" gas on ~ pc scale, "filaments & ridges" on few 0.1 pc, "cores" < 0.1 pc

Massive filaments– $A_v > 100$ "ridges" may form massive stars (Hill et al 11)

Filamentary models - overview

How to make a single filament

compress in 2D	in 2D shock in 2 directions	oblique colliding flows HD or MHD turbulence
	gravitational amplification of prolate cloud	
elongate in 1D	shearing motions	HD or MHD turbulence

How to make a system of filaments

1. compress in 1D	single shock	head-on colliding flows swept-up shell
2. modulate	gravitational equilibrium gravitational fragmentation thin-shell and other instabilities	

Combination of large-scale flows, turbulence, magnetic field, gravity

Gravitational equilibrium

Infinitely extended, isothermal, self-gravitating equilibrium layer (Schmid-Burgk 67)

Constant density contours

A = 0 uniform Spitzer 42

 $A \rightarrow 1$ cylinders Stodolkiewicz 63

Ostriker 64

$$\rho = \rho_0 \frac{1 - A^2}{\left[\cosh\left(\frac{z}{l_0}\right) - A\cos\left(\frac{x}{l_0}\right)\right]^2}$$

 l_0 = thermal scale height = $\sigma/(2\pi G\rho_0)$ ρ_0 = unmodulated midplane density

Limitations - infinite extent, no hub, no network

Flows make filamentary layers

clumpy medium compressed into layer with S-B modulation: outer equilibrium, inner collapse (M 09a) (What sets modulation?)

Colliding atomic flows interface elongated 3:1 moderate perturbation of interface global gravity creates main filament no B, no stars (Heitsch & Hartmann 09)

Colliding atomic flows circular interface weak B along flow filamentary network (Banerjee et al 09)

HD turbulence makes filaments

Turbulent stirring uniform cloud: shocks, filaments and cores. Gravity preserves denser structures.

Radiative feedback heats gas, makes fewer fragments, BDs, does not change SFR (Bate 11)

MHD turbulence makes filaments

Collapse of a magnetically supercritical 1600 M_{Sun} clump; massive sf is outflow-regulated, clump-fed (Wang et al 10)

Collapse of a magnetically supercritical 100 M_{Sun} clump; *B* reduces inner *J*, helps launch outflows, reduces fragmentation (Hennebelle et al 11)

MHD turbulence channels flows, give less fragmentation, lower stellar masses than HD turbulence

Relation of clumps, filaments, and cores

observed

Cores in Lupus 3 Teixeira et al 06

models

Clump with isolated core, mass boundary *isolated core collapse* Clump with cores no mass boundaries *core-clump accretion* Clump with cores in filaments, no mass boundary *filamentary core-clump accretion*

1 pc

Cores in filaments

multiple cores, ~ regular spacing, wide range of size scales

Gravity

Taurus L1495 Schmalzl et al 10

IRDC G28.34 Zhang et al 09 SMA André, Hacar, Teixeira talks

High resolution Oph A N6 Bourke et al 11 SMA Models: similar to models of filament formation

exact isothermal equilibriumCurry 00Jeans fragmentationLarson 85

critically stable iso cylinder $M/L = 2\sigma^2/G$ Jeans spacing $\lambda \sim \sigma/(G\rho_0)^{1/2}$

Turbulence HD, MHD models match general structure, more studies are needed

Are filaments isothermal?

If filamentary chains make the IMF, their structure is not purely isothermal (M11a) L977 Alves et al 98 Herschel tests

core-clump n(r)+ ELS \rightarrow IMF

same M(r) similar MF

spherical core in spherical envelope

spherical core in cylindrical envelope equal-spacing filamentary chain

Some clusters look like bundles of filamentary chains:

Ser S Gutermuth et al 09 André et al 10 converging filaments

The role of cores: starless cores are contracting

CS 2-1 line maps of 33 starless dense cores:

Most cores are contracting over ~0.1 pc at ~0.1 km s⁻¹ Denser cores are more likely to contract

(Lee & Myers 11) Lee poster

19 contracting: blue-skewed line profiles dominate

3 oscillating: mix of redand blueskewed profiles

3 expanding: red-skewed line profiles dominate

8 *static:* no significant skewing of line profiles

The role of cores: cores harbor protostars

Early: *IRAS* protostars in $C^{18}O$ and NH_3 line cores (Beichman et al 86)

Recent: *Spitzer* protostars in mm and submm dust continuum cores

Protostars projected on Bolocam cores Enoch et al 09

Protostars centered in SCUBA cores Jørgensen et al 08

The role of cores: do cores set star mass?

Stars are born in cores

core = local max of n, Ndense starless cores are contracting protostars are associated with cores

Yes

boundary limits accretion one core, one star

core density profile ~ BE sphere CMF sets IMF $M_{star} = \varepsilon M_{core}$ accretion from environment one clump, many cores

No

 M_{star} increases with rate and duration of accretion *CMF does not set IMF*

key problem: what sets CMF?

André, Bate, Boss, Chabrier, Commerçon, Duchene, Reipurth talks

Cores with boundaries

cold dense globules bounded by transition to hot rarefied medium

Reipurth 03

Alves, Lada & Lada 01

Thackeray 3 in H II region IC2944 Barnard 68 in Loop I superbubble from Sco-Cen OB Association

Mäkelä poster - globulettes

Cores without boundaries

Steep-slope cores in shallow-slope clump No accretion boundary as in BE model

LupusTeixeira, Lada & Alves 05PerseusKirk, Johnstone & Di Francesco 06

Model: core in clump Clump = core environment No unique free-fall time

M 09b

Cores without boundaries

Steep-slope cores in shallow-slope clump No accretion boundary as in BE model

Model: core in clump Clump = core environment No unique free-fall time

LupusTeixeira, Lada & Alves 05PerseusKirk, Johnstone & Di Francesco 06

M 09b

If no accretion boundary, what stops accretion?

What stops accretion?

We know accretion stops...

Cores disappear after << 1 Myr Jørgensen et al 08

Cluster partly revealed after ~ 1 Myr Walawender et al 08

Outflow lobes broaden over time Arce & Sargent 06

Multiple outflows disrupt L1641-N Stanke & Williams 07

But we don't know how

Stellar feedback: outflows massive star rad'n, winds ionization, evaporation

dynamical ejection competitive accretion combination of effects *key problem (SAL 87)*

Hartmann, Natta, Reipurth talks

Serpens Greaves et al 10

How are accretion durations distributed?

Accretion durations are not all equal

No unique free-fall time Ejection, feedback, competition limit accretion Simulations show broad distribution of t_f

Model: equally likely accretion stopping (ELS)

 $p(t_f) \sim \exp(-t_f / \langle t_f \rangle)$

(Basu & Jones 04)

Basu, Bate, Dunham, Offner, Reipurth, Stamatellos talks

broad distributions of accretion duration and protostar mass Bate 11

ELS prob density of duration M09

Core-clump accretion models

Complex 3D structure \rightarrow *model 1D accretion rate; match IMF and protostar luminosity function*

Pure core collapse doesn't make massive stars in the available time

$$\dot{m} = \dot{m}_{core} + \dot{m}_{core} \left(\frac{m}{\dot{m}_{core} \tau_{clump}}\right)^{p}$$

Pure clump accretion requires seed masses ignores protostars in cores

2CTC and 2CCA accretion rate + IMF fits PLF Offner & McKee 11

Offner talk

Core-clump accretion rate + ELS fit IMF, PLF M11b

Summary

star-forming clouds are filamentary

filaments have multiple cores

role of cores

set star mass?

key problems

one main filament parallel filaments network hub-filament system

colliding flows HD shocks MHD shocks gravity

models - similar to filament formation isothermal & gravity, MHD & HD turbulence

cores are birth sites

Yes: isolated collapse bounded core

do cores set star mass? what stops accretion? what sets the CMF? contraction protostars

No: core-clump accretion, stop times distributed

Thanks...to organizers for the invitation, to P. Hennebelle & Q. Zhang for recent results!

23