Results

Spectroscopy of Very Low Mass Stars and Brown Dwarfs in the LOSFR.

Enlarging the census down to the planetary mass domain in C69

A. Bayo

collaborating with D. Barrado, J.R. Stauffer, M. Morales-Calderón, N. Huélamo, C. Melo, H. Bouy, B. Stelzer

ESO, Garching

October 24, 2011

Outline

Introduction

- Low mass SF
- The Lambda Orionis Star Forming Region
- Goals

Our surveys

Photometry and X-rays

3 F

Results

- SED analysis
- C69 Age estimation
- Activity and accretion
- Disks Properties
- Spatial distribution
- The IMF of Collinder 69

Introduction 000

Low mass SF Theory

 Turbulent fragmentation (Padoan & Nordlund, 2002. Hennebelle & Chabrier. 2008. Chabrier & Hennebelle, 2011):

density enhancements \rightarrow decrease the Jeans mass

- Ejection scenario (Reipurth & Clarke 2001): stellar embryos ejected before accreting enough mass for H burning.
- Photoevaporation (Whitworth & Zinnecker 2004): winds from massive nearby stars \rightarrow lost envelopes of protostellar cores.
- Disk fragmentation (Goodwin & Whitworth, 2007) and Stamatellos et al 2007): scaled up version of planets.

Hogerheilde 1998, after Shu et al. 1987

- A. ~8-10 Myr ago, the λ Ori region was composed of a starless, roughly linear string of dense molecular clouds.
- B. Over the next few Myr, stars began to form in the densest portions of this cloud chain. 6 Myr ago, a dozen OB stars formed near λ Ori's present-day position while lowmass stars formed in all productive areas of the star-forming complex.
- C. ~1 Myr ago, one of the O stars became a supernova. The blast quickly dispersed all of the parent core, creating the molecular ring, the large HII region, and the nearby HI structures.
- D. Today we see the fossil distribution of young stars within the molecular ring, as well as the remnants of the B30 and B35 clouds within the ionized region.

- Spectroscopically confirm the lowest mass members of the three associations (including Brown Dwarfs and IPMOS).
- Build complete census for the three regions.
- Relate properties of individual sources (acc. rates, etc.) with three different environments (ages).
- Build a very complete IMF for Collinder 69 from \sim 20 M $_{\odot}$ down to the planetary mass domain (shared mechanism of formation for low mass domain?).
- "Test" the Supernova hypothesis.

Results

Conclusions

Photometric and X-ray surveys

Theoretical model se	ervices		Documents Models	Services 🌆 🁔				
svo)	VOSA: VO) Sed Analyzer						
n TYPESAN DESCRIPTION	v	SED Analyzer		2002 1100				
Services: VOSA Fil	lters TSAP S3if			My data L				
VOSA								
Sessions Files Obj	jects VO Phot. SED Model Fi	Bayes Analysis Template fit	HR Diag. Save Results Hel	p Logout				
Stars and brown dwarfs (Change)	Session: Collinder LOri members	tests (info) (Change)	File: LOri tests (info) (C	hange)				
It must comply with the required data format (A small utility is available to help you to convert an original file in ascii (svi) or votable to VOSA input format) Please, include a description for your file, it is compulsory File to uplead: Exerciption File type: Brace								
	Uplo: Select Six Oste Filename 2010-04-28 23:38:59 fichero_inpu	ded files « Retrieve Delete _final_all_errors_corrected.ascii I	Descrip LOri tests					
	L	Dri001						
Filter: SDSS_R Cf λmed: 6261 6 Flux: 1.321348e-14 1 ΔF: 3.285918e-16 1	PUSILIUM: (83.446555,39.32735) PHT_R CHT_J 2MASS J2MASS 582 8228 12350 16620 .447193e-14 1.345174e-14 1.052144e-14 6.8455 .332914e-16 1.238951e-16 2.131932e-16 1.3657	I) Distance: 400, pC A; U.3520 H 2MASS_Ks IRAC_H 21590 35534 70e-15 3.025102e-15 5.502778e-16 99e-16 5.851066e-17 1.520474e-18	IRAC_I2 IRAC_I3 IRAC 45110 57593 7955 2.128458e-16 8.649135e-17 2.54 7.841528e-19 7.169533e-19 2.34	14 14 3987e-17 3098e-19				
	L	Dri002						
Eliter 2022 D	Position: (84.043167,10.14858	3) Distance: 400. pc A _v : 0.3620	19598					
Amed: 5055_R Cr Amed: 6261 6 Flux: 8.754217e-15 1 ΔF: 2.015733e-16 1	Inf CHT ZMASS_J ZMASS_J 582 8228 12350 16620 170918e-14 1.204422e-14 1.119116e-14 8.7453 .078455e-16 1.109313e-16 2.473785e-16 1.8525	21590 35634 65e-15 4.129904e-15 7.207456e-16 99e-16 7.227187e-17 1.991494e-18	45110 57593 7959 2.589793e-16 1.123499e-16 3.43 7.155862e-19 9.313027e-19 2.53	,4 4906e-17 0932e-19				
LOri003 Bayo et al. (2008)								

VO)	eoretical model service:	VOS	SA: VO Sed Ana VO SED Analyzer	lyzer	Documents Mode	els Services
Serv	vices: VOSA Filters	TSAP S3if				My data L
			VOSA			
Sessions	Files Objects	VO Phot. SED	Model Fit Bayes Analysis	Template fit HR Diag	9. Save Results H	elp Logout
Stars and brow	vn dwarfs (Change)	Session: Collinder LOri	members tests (info) (Change)	File: LOri tests (info) (Change)
	This option allows y	ou to increase the wavelength	VO photometry coverage of the SEDs of your	objects adding photom	etry from VO catalogues.	
	Take a look to the o	orresponding Help Section and	Credits Page for more inform	nation.		
		First select t	ne VO services that you	want to use		
			Mark All Unmark All Query selected services			
	✓ 2MAS	S All-Sky Point Source Catal	og			
	2MASS brighter Filters: Search Show n	has uniformly scanned the entire s than about 1 mJy in each band, w 2MASS_J 2MASS_H radius: S arcsec agnitude limits	ky in three near-infrared bands t ith signal-to-noise ratio (SNR) g 2MASS_Ks	o detect and characterize p reater than 1. More Info.	point sources	
	V Tycho	-2 Catalogue				
	The Typ	ho-2 Catalogue is an astrometric r our photometric data for the 2.5 m	eference catalogue containing po illion brightest stars in the sky	sitions and proper motions More Info.	as well as	
	Filters:	УТУСНО_В УТУСНО_V				
	Search Show n	radius: Sarcsec				
	T					
	The full	CMC-14 catalog (around 95.85mill)	lion source in the region -30 to +	50°) More Info.		
	Filters: Search Show n	SDSS_R radius: s arcsec lagnitude limits				
	Strom	gren uvby-beta Catalogue (Hauck+ 1997)			
	This cal	alogue is an updated version of th	e one published in 1990 (Hauck a	and Mermilliod, 1990) and o	contains data for	at al. (0000)

	eoretical model servi		V	DSA: V	VO SED Anal	l Anal	yzer		Documents	Prodels 56	
Ser	vices: VOSA Filter	s TSAP S3i	f								My da
					VOSA						
Sessions	Files Objects	VO Phot.	SED	Model	Fit Br	ayes T	emplate fit	HR Diag.	Save Results	Help	Logout
Stars and brow	vn dwarfs (Change)	Sess	on: Collinder	LOri membe	rs tests (info) (Change)		I	ile: LOri test	s (info) (Change)	
	10,1000			Ob	ject da	ta					
LOri001	LOri029										
LOri002	Data for th	is object:	144065) DIS	Lance: 400	. pc A _V : 0	30209398					
LOriood		is object.	Final			User	1	o			
L Ori005	Filter	Amed	Flux	ΔF	Flux	ΔF	Flux	ΔF			
LOri005	CFHT_R	6582 3.07	9827e-15 2.8	36626e-17	3.079827e-1	5 2.83662	6e-17	Delet	e		
L Ori007	CFHT_I	8228 4.57	9084e-15 4.2	17492e-17	4.579084e-1	5 4.21749	2e-17	Delet	e		
LOri008	2MASS_J	12350 4.53	8110e-15 1.0	86736e-16	4.538110e-15	5 1.08673	6e-16	Delet	e		
LOri009	2MASS_H	16620 3.08	5872e-15 7.6	73922e-17	3.085872e-1	5 7.67392	2e-17	Delet	e		
L Ori010	2MASS_Ks	21590 1.67	0090e-15 2.9	22599e-17	1.670090e-1	5 2.92259	9e-17	Delet	e		
LOri011	IRAC_I1	35634 5.34	7884e-16 1.4	77675e-18	5.347884e-16	6 1.47767	5e-18	Delet	0		
LOri012	IRAC_I2	45110 3.14	8220e-16 8.6	98853e-19	3.148220e-16	6 8.69885	3e-19	Delet	0		
LOri013	IRAC_I3	57593 1.96	8669e-16 1.0	87927e-18	1.968669e-16	6 1.08792	7e-18	Delet	0		
LOri014	IRAC_I4	79594 1.32	2863e-16 3.6	55205e-19	1.322863e-16	6 3.65520	5e-19	Delet	0		
LOri015	MIPS_M1	238442 2.02	7081e-17 1.3	06907e-19	2.027081e-1	7 1.30690	7e-19	Delet	e		
LOri016	Excess det	ected from IR	AC_I1. Poin	ts with larg	er waveler	ngth will n	ot be cons	dered in me	odel fit.		
LOri017	You can m	anually specify	where exce	ss starts.							
LOri018	Apply exce	ss from IRAC_I									
LOri019											
LOri020			LOri029								
LOri021						• Uper data	1				
LOri022		• • •			L		1				
LOri023			•								
LOri024	2 10~-15										
LOri025	192		•								
LOri026	¢(cm		•								
LOri027	(erg			•							
1.0-1000	µ. 10~-16									Bayo at a	1 /2000

C69. Spectroscopic Characterization

neoretical model services	Documents	Models	Ser
VOSA: VO Sed Analyzer			
vices: VOSA Filters TSAP S3if			

VOSA

Files	Objects	VO Phot.	SED	Model Fit	Bayes Analysis	Template fit	HR Diag.	Save Results	Help	
wn dwarfs (Change)	hange)		File	: LOri tests (info)) (Change)					

Model fit

Hide graphs Delete this fit

Best fit results

Object	RA	DEC	D (pc)	Model	Teff	logg	Meta.	more	X ²	Md	Ftot	ΔF _{tot}	Fobe/Ftot	L _{bol} /L _{sun}	ΔL _{bol} /L _{sun}	λ _{max}	N _{fit} /N _{tot}	Data
LOri001	83.446583	9.9273611	400.000	COND00	4000	2.5	0.0		8.03e+1	1.30e-20	1.84e-10	1.26e-12	0.49	9.19e-1	6.26e-3	79594	9/9	Syn.8
LOri002	84.043167	10.148583	400.000	Kurucz	3750	0.00	-1.50		6.46e+1	1.80e-20	1.96e-10	1.42e-12	0.49	9.77e-1	7.07e-3	79594	9/9	Syn.8
LOri003	83.981000	9.9420833	400.000	Kurucz	4000	0.00	0.20		1.04e+1	1.09e-20	1.59e-10	1.11e-12	0.46	7.92e-1	5.56e-3	21590	5/9	Syn.8
LOri004	83.948125	9.7640278	400.000	NextGen	3900	5.0	0.0		1.98e+1	1.17e-20	1.55e-10	1.07e-12	0.45	7.71e-1	5.32e-3	21590	5/9	Syn.8
LOri005	83.473542	0.7400000	**** ****			~ ~	~ ^		· · · · · ·	101-00	1 10	1 000 10	A 44	· · · · ·	· · · · ·	79594	9/9	Syn.8
LOri006	83.817750															21590	5/9	Syn.8
LOri007	83.623125				100115							10	1100			21590	5/9	Syn.8
LOri008	83.991542		Model -	NevtGen Te	E0111.	loddad	0 Net				Model - DUSTY	00 Tass-2	500 loss:	5.0 Nets -	0.0	79594	9/9	Syn.8
LOri009	83.693083			Nextoorily re		1088.4	10, 1100		-		10001100011	00, 1011.2	5007 TOgg.	needin		79594	9/9	Syn.8
LOri010	83.637333	10~-16 =	1	1010 *						11~-17 =						79594	9/9	Syn.8
LOri011	83.686083		M	1171						-	- A.	• (11)		•		79594	9/9	Syn.8
LOri012	83.774792	3	1.1811	1.10	V 1.				3	1	141	and a second	1117	1		79594	9/9	Syn.8
LOri013	83.484792	- 2 H-17 =	4.6				•		2/8	18^-18 킄	- I 150					21590	5/9	Syn.8
LOri014	84.079292	s/ci					• *	-	s/ci	-	X					21590	5/9	Syn.8
LOri015	83.591000	, (er	1					•	e.		- MPE 1					79594	9/9	Syn.8
LOri016	83.806250	11. 10~-10					1.1		щ	n-n <u>∃</u>	10.					21590	5/9	Syn.8
LOri017	84.085375		1					1		1						79594	9/9	Syn.8
LOri018	84.069125	187-19-														21590	5/9	Syn.8
LOri019	83.807042			1074				10	-5			11		ź	×1(21590	5/9	Syn.8
LOri020	83.739875				λ(A)							2	(A)			21590	5/9	Syn.8
LOri021	83.778917															79594	9/9	Syn.8
LOri022	83.963958	9.9196667	400.000	NextGen	3800	5.0	0.0		2.89e+1	7.05e-21	8.31e-11	5.78e-13	0.48	4.15e-1	2.88e-3	57593	8/9	Syn.8
LOri023	83.990208	9.7929444	400.000	NextGen	3900	5.0	0.0		2.63e+1	6.10e-21	7.86e-11	5.84e-13	0.48	3.92e-1	2.91e-3	79594	9/9	Syn.8
LOri024	83.737958	9.9100278	400.000	COND00	3900	2.5	0.0		2.00e+1	5.86e-21	7.69e-11	6.48e-13	0.46	3.84e-1	3.23e-3	21590	5/9	Syn.8
LOri025	84.084083	9.7338889	400.000	Kurucz	3500	1.50	-2.50		1.57e+1	9.26e-21	7.81e-11	9.72e-13	0.46	3.89e-1	4.85e-3	21590	5/9	Syn.8

C69. Spectroscopic Characterization

0	oretical model :	services		vo)SA	: VO S	ed An	alyzer			s Pioueis Se	ivices
	VOCA	These Tru	. cai			VO SED	Analyzer					2002
Jervi	Services: VOSA Filters ISAP SSIT											
	VOSA											
Sessions	Files C	bjects	VO Phot.	SED		4odel Fit	Bayes Analysis	Template fit	HR Diag.	Save Resul	ts Help	Logout
Stars and brown	dwarfs (Change)		Sess	ion: Collinder L	Ori me	mbers tests	(info) (Chang	e)		File: LOri tes	sts (info) (Change)
					lod	al Bavo	analy	cic				
					iou	ci Duyc.	unury	313				
Bestfit	LOrio	001										
LOri001		Here you	can see	, for each m	odel,	the relative	probability	found for eac	h			
LOri002		parameter.										
LOri003		Only those	with a p	robability high	er thar	n 1e-5 are sh	own.					
LOri004												
LOri005	The N	lextGen M	odel At	mosphere g	rid.	Deeds at 1994						
LOri006	meta.	Probability	1099	Probability	eff	Probability						
LOri007	0.0	1.000000	5.0	0.999242	4000	1.000000						
LOri008			5.5	0.000756								
L Ori009	The D			moenhere	rid							
LOrioto	logg	Probability	Tett	Probability								
LOriott	50	0.965784	3900	1.000000								
LONOT	55	0.034216										
LOH012		0.004210	-									
LONOIS	The C	ONDO0 M	del Ati	nosphere gi	id.							
LOn014	logg	Probability	Teff	Probability								
LONOIS	2.5	0.891237	4000	1.000000								
LONOIS	3.0	0.108763										
LON017			-									
LOnio18	Kuru	cz ATLAS9,	ODFN	EW /NOVER	mod	els						
LOri019	- Meta.	Probability	logg	Probability	Teff	Probability						
LOri020	-2.50	0.233853	0.50	0.000167	4000	1.000000						
LOri021	-2.00	0.657809	1.00	0.016678								
LOri022	-1.50	0.103494	1.50	0.285839								
LOri023	-1.00	0.004745	2.00	0.655479								
LOri024	-0.50	0.000099	2.50	0.041791								
LOri025			3.00	0.000046								
LOri026						Heta.						
LOri027											Bavo et a	al. (2008

Introduc	

Results

Spectroscopic confirmation of candidates

- Alkali lines \Rightarrow youth indicators
- Emission lines ⇒ activity and accretion

Results

Conclusions

Alkali: signpost of youth

Lambda (A)

Alkali: signpost of youth

Results

Conclusions

Alkali: signpost of youth

Our surveys	Results	Conclusions
	000000000	

The youth of C69

Our surveys	Results	Conclusions
	000000000	

The youth of C69

οdι	ıcti	

Results ○○○○●○○○○○ Conclusions

Alkali variability

Intro	

Results

Conclusions

Alkali variability

Our surveys	Results	Conclusions
	000000000	

Our surveys o	Results ○○○○○○●○○○	Conclusions

Distinguishing between accretion and activity

Saturation criteria Barrado y Navascués & Martin (2003)

Our surveys o	Results ○○○○○○●○○○	Conclusions

Saturation criteria Barrado y Navascués & Martin (2003)

Introduction

Our surveys

Results

Conclusions

Disks Properties and distribution

Disk and diskless populations unevenly distributed \Rightarrow Not consistent with SN hypothesis.

Stellar disk fraction 28.5%

Sub-stellar disk fraction >30%

Barrado y Navascués et al. (2004) 40% Scholz et al. (2007) 37.9% for Upper-Sco

Accretors fraction

sub-stellar 18%

Scholz et al. (2007) 31% for Upper Sco (low-mass and sub-stellar)

Introduction

Our surveys

Results ○○○○○○○●○ Conclusions

Spatial distribution of the members

Homogeneous distribution of both BDs and stars

⇒ Caveats to ejection scenario

Results

Conclusions

IMF of Collinder 69

 $R_{SS} = \frac{N(0.02 \le M/M_{\odot} \le 0.08)}{N(0.08 \le M/M_{\odot} \le 10)}$

Briceño et al. (2002)

Collinder 69 \Rightarrow 0.06

~ Taurus

Briceño et al. (2002)

< Taurus

revised by Guieu et al (2006)

< ONC

Kroupa et al. (2003)

Results

Conclusions

IMF of Collinder 69

C69. Spectroscopic Characterization

- Complete census of ~175 spectroscopicaly confirmed members plus 60 photom. probable members.
- Physical parameters derived for the spectroscopic sample: Spectral Type, Hα and Li I equivalent width, accretion rates, etc.
- Age study: upper limit of 20 Myr, optimal 5 Myr.
- One of the most complete spectroscopic IMF reported so far (from $\sim 20 M_{\odot}$ down to 20 M_{Jup} ; the photometric reaches 8_{Jup})
- No evidence of mass segregation (caveats on ejection scenario for BD formation)
- Study of the disks properties: Not consistent with SN scenario

Bayo et al. (2011)

THANK YOU!!!