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Origin of Low End of Stellar Mass 
Function? 

Figure: André, Basu, & 
Inutsuka (2009) 

Lowest mass clumps not well sampled, but also may not be 
gravitationally bound. Where do lowest mass stars come from? 

IMF = initial 
mass 
function of 
stars, i.e., 
stellar mass 
distribution, 
average mass           
~ 0.25 Msun 

Brown dwarfs 



Gravitational Collapse 

Minimum mass for gravity to overcome internal thermal 
pressure, i.e., Jeans mass: 
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Can direct gravitational collapse from interstellar clouds explain 
low mass stars, brown dwarfs, planets? 

Planets have long been thought to arise from disk processes, 
so always accompany a star,  and not from direct collapse from 
clouds. 



A Global Model, Nonaxisymmetric 
Model for Disk Formation/Evolution  

Logarithmically spaced grid in r-direction, uniform in f direction 

Central sink cell with unresolved physics, size 5-10 AU. 

Simulations require high 
resolution in the inner 
regions, while a lower 
resolution may be 
sufficient in the outer 
regions 

Models run with 1282, 
2562, 5122 grids. Span 
large dynamic range in 
space (outer boundary at 
~10,000 AU, but 
innermost grid resolution 
~ 0.1 AU) and time (can  
follow evolution for 
several Myr after disk 
formation). 



Global Modeling, Thin-Disk Approx. 

                           Vertical motions are neglected,  
             local vertical hydrostatic equilibrium is assumed. 

Central star 
 (polytrope) 

Inner inflow boundary 
   (sink cell ~ 5 AU) 
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background temperature, F =A cos stellar irradiation flux
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midplane optical depth opacity from Bell & Lin (1990);
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Basic Equations, Thin-Disk 
Approximation 
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Initial Conditions of Prestellar Core 
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From Basu (1997), analytic fits to power-law profiles that develop 
in isothermal gravitational collapse. 
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Overall qualitative 
character of disk evolution 
is independent of the initial 
profiles of these quantities. 



Disk Evolutionary Images 

Based on Vorobyov & Basu (2006) 



Key Results for Early Accretion Phase 
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Vorobyov & Basu (2006) 

Bursts of accretion occur during the early accretion 
phase, as clumps are formed and driven inward. This 
is followed by a more quiescent phase that is still 
characterized by flickering accretion. 

Nonlinear 
instability  
clumps  
efficient 
angular 
momentum 
transport 

Quiescent period 

Just before a burst 



Multiple Fragments in Massive Disk  
Ejection of Low Mass Fragment 
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Basu & Vorobyov (2011) 
Ejection correlated with higher mass and angular 
momentum in initial state. 
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No sink cells employed to follow clumps, ejected ones or otherwise. 



Ejections occur in many models 

Basu & Vorobyov (2011) 

Ejected clumps span 
the substellar to low 
mass star regime, and 
have ejection speeds 
0.8 +/- 0.35 km/s.  

Some models exhibit 
multiple ejections 

Lowest mass objects 
more likely to be 
sheared by tidal effects 
arising from ejection 



Ejections and Initial Conditions 

Basu & Vorobyov (2011) 

In dark shaded region, 
about 50% of 
realizations result in an 
ejection. 



Brown Dwarfs: From Clump Ejections, 
BD Ejections, or Direct Collapse? 

Empirical Property Clump 
Ejection 

BD ejection Core 
Collapse 

Can very low mass fragments collapse?     N/A 

Presence of disks around BDs 

Isolated very low mass cores 

Moderate velocity dispersion of BDs 

BDs and young stars generally co-located 
 

BD-star binaries generally on wide orbits, 
tens of AU (“brown dwarf desert”) 

BD-BD binaries generally very close, few AU 

A few wide BD-BD binaries 



Summary 

• Disk evolution calculated from self-consistent collapse of dense core 
yields a paradigm of episodic clump formation, migration (leading to 
episodic accretion), dissolution, or ejection.   

• This scenario leads naturally to ejected clumps that straddle the 
substellar mass limit. Can expect the formation of isolated BDs and 
VLMSs that have their own disks.  

• Ejection speeds are moderate, ~ 1 km/s, arising self-consistently, and 
not dependent on sink cell approximations. Expect  BDs to be co-
located with and having same velocity dispersion as stars 

• A wide range of BD observations can be understood at least 
qualitatively using this hybrid scenario of clump ejections arising from 
interaction of multiple fragments within the disk 


