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Origin of Low End of Stellar Mass
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Lowest mass clumps not well sampled, but also may not be
gravitationally bound. Where do lowest mass stars come from?

IMF = initial
mass
function of
stars, i.e.,
stellar mass
distribution,
average mass
~0.25 M,

Figure: André, Basu, &
Inutsuka (2009)



Gravitational Collapse

Minimum mass for gravity to overcome internal thermal
pressure, i.e., Jeans mass:
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Can direct gravitational collapse from interstellar clouds explain
low mass stars, brown dwarfs, planets?

Planets have long been thought to arise from disk processes,
so always accompany a star, and not from direct collapse from
clouds.



A Global Model, Nonaxisymmetric

Model for Disk Formation/Evolution

Logarithmically spaced grid in r-direction, uniform in ¢ direction
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Global I\/Ioelin, Thin-Disk A OroX. |

Background irradiation

Surface, cooling

\ ¢

< Two scale heights
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Vertical motions are neglected,
local vertical hydrostatic equilibrium is assumed.

Parent cloud




Basic Equations, Thin-Disk

Approximation
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O-Tirr4 = O'Tbg4 +F., Tbg — background temperature, F_=A p ;rtz cosy, _-stellar irradiation flux

7 = 2k | 2 — midplane optical depth, k" — opacity from Bell & Lin (1990);

C =2+ 20tan " r/3x



Initial Conditions of Prestellar Core

10%

—
o
o

column density
2

[
o
=}

—
)
L

radius

1074 1072

10°

—_
o
w

107

10't

angular velocity

radius

C :
3(r)= a=-——, c, =isothermal sound speed.

Overall qualitative
character of disk evolution
is independent of the initial
profiles of these quantities.

From Basu (1997), analytic fits to power-law profiles that develop
in isothermal gravitational collapse.



Disk Evolutionary Images

Based on Vorobyov & Basu (2006)



Mass accretion rate (M yr'l)

Key Results for Early Accretion Phase
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Bursts of accretion occur during the early accretion
phase, as clumps are formed and driven inward. This
is followed by a more quiescent phase that is still
characterized by flickering accretion.
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Multiple Fragments in Massive Disk =2
of Low Mass Fragment

No sink cells employed to follow clumps, ejected ones or otherwise.
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Ejection correlated with higher mass and angular
momentum in initial state. Basu & Vorobyov (2011)




Ejections occur in many models
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Basu & Vorobyov (2011)

Ejected clumps span
the substellar to low
mass star regime, and
have ejection speeds
0.8 +/- 0.35 km/s.

Some models exhibit
multiple ejections

Lowest mass objects
more likely to be
sheared by tidal effects
arising from ejection



Ejections and Initial Conditions
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Brown Dwarfs: From Clump Ejections,
BD Ejections, or Direct Collapse?

Empirical Property Clump BD ejection | Core
Ejectlon Collapse

Can very low mass fragments collapse?
Presence of disks around BDs

Isolated very low mass cores

Moderate velocity dispersion of BDs

BDs and young stars generally co-located

BD-star binaries generally on wide orbits,
tens of AU (“brown dwarf desert”)

BD-BD binaries generally very close, few AU

A few wide BD-BD binaries




Summary

e Disk evolution calculated from self-consistent collapse of dense core
yields a paradigm of episodic clump formation, migration (leading to
episodic accretion), dissolution, or ejection.

* This scenario leads naturally to ejected clumps that straddle the
substellar mass limit. Can expect the formation of isolated BDs and
VLMSs that have their own disks.

e Ejection speeds are moderate, ~ 1 km/s, arising self-consistently, and
not dependent on sink cell approximations. Expect BDs to be co-
located with and having same velocity dispersion as stars

* A wide range of BD observations can be understood at least
qualitatively using this hybrid scenario of clump ejections arising from
interaction of multiple fragments within the disk



