# Brown Dwarfs from Disk Fragmentation and Ejection

#### Shantanu Basu

*The* University *of* Western Ontario Collaborator: Eduard Vorobyov (University of Vienna)



Very Low Mass Stars and Brown Dwarfs ESO workshop, Garching, Germany Tuesday, October 11, 2011



## Origin of Low End of Stellar Mass Function?



## **Gravitational Collapse**

Minimum mass for gravity to overcome internal thermal pressure, i.e., Jeans mass:

$$M_{J} = \left(\frac{\pi^{3} c_{s}^{6}}{G^{3} \rho}\right)^{1/2} \approx 5.5 \left(\frac{T}{10 \text{ K}}\right)^{3/2} \left(\frac{10^{4} \text{ cm}^{-3}}{n}\right)^{1/2} M_{\odot}$$

Can direct gravitational collapse from interstellar clouds explain low mass stars, brown dwarfs, planets?

Planets have long been thought to arise from disk processes, so always accompany a star, and not from direct collapse from clouds.

# A Global Model, Nonaxisymmetric Model for Disk Formation/Evolution

#### Logarithmically spaced grid in *r*-direction, uniform in $\phi$ direction

Simulations require high resolution in the inner regions, while a lower resolution may be sufficient in the outer regions



Models run with 128<sup>2</sup>, 256<sup>2</sup>, 512<sup>2</sup> grids. Span large dynamic range in space (outer boundary at ~10,000 AU, but innermost grid resolution ~ 0.1 AU) and time (can follow evolution for several Myr after disk formation).

Central sink cell with unresolved physics, size 5-10 AU.



## Basic Equations, Thin-Disk Approximation

$$\begin{aligned} \frac{\partial \Sigma}{\partial t} + \nabla \cdot (\Sigma \mathbf{u}) &= 0, \\ \frac{\partial (\Sigma \mathbf{u})}{\partial t} + \nabla \cdot (\Sigma \mathbf{u}\mathbf{u}) &= -\nabla P - \Sigma \nabla \Phi \\ \frac{\partial \varepsilon}{\partial t} + \nabla \cdot (\varepsilon \mathbf{u}) &= -P(\nabla \cdot \mathbf{u}) - C(T^4 - T_{irr}^4) \left(\frac{\tau}{1 + \tau^2}\right) \\ \mathbf{u} &= \mathbf{u}_r \, \hat{r} + \mathbf{u}_{\varphi} \, \hat{\varphi}; \quad \nabla = \hat{r} \, \frac{\partial}{\partial r} + \hat{\varphi} \, r^{-1} \frac{\partial}{\partial \varphi}, \end{aligned}$$

 $\sim$ 

 $\sigma T_{irr}^{4} = \sigma T_{bg}^{4} + F_{irr}, \quad T_{bg} - \text{background temperature}, \quad F_{irr} = A \frac{L_{st}}{4\pi r^{2}} \cos \gamma_{irr} - \text{stellar irradiation flux}$  $\tau = \Sigma \kappa / 2 - \text{midplane optical depth}, \ \kappa - \text{opacity from Bell \& Lin (1990);}$  $C = 2 + 20 \tan^{-1} \tau / 3\pi$ 

## Initial Conditions of Prestellar Core



$$\Sigma(r) = \frac{\Sigma_0}{\sqrt{1 + (r/a)^2}}, \qquad a =$$

 $c_s$  = isothermal sound speed.

Overall qualitative character of disk evolution is independent of the initial profiles of these quantities.

$$\Omega(r) = 2\Omega_0 \left(\frac{a}{r}\right)^2 \left[\sqrt{1 + \left(\frac{r}{a}\right)^2} - 1\right]$$

From Basu (1997), analytic fits to power-law profiles that develop in isothermal gravitational collapse.

#### **Disk Evolutionary Images**



#### Key Results for Early Accretion Phase



Bursts of accretion occur during the early accretion phase, as clumps are formed and driven inward. This is followed by a more quiescent phase that is still characterized by flickering accretion.

Vorobyov & Basu (2006)

-250-

-250

-150

-50

Radial distance (AU)

50

150

250

# Multiple Fragments in Massive Disk → <u>Ejection of Low Mass Fragment</u>

No sink cells employed to follow clumps, ejected ones or otherwise.



Ejection correlated with higher mass and angular momentum in initial state.

Basu & Vorobyov (2011)

#### Ejections occur in many models



Ejected clumps span the substellar to low mass star regime, and have ejection speeds 0.8 +/- 0.35 km/s.

Some models exhibit multiple ejections

Lowest mass objects more likely to be sheared by tidal effects arising from ejection

Basu & Vorobyov (2011)

#### **Ejections and Initial Conditions**



In dark shaded region, about 50% of realizations result in an ejection.

Basu & Vorobyov (2011)

# Brown Dwarfs: From Clump Ejections, BD Ejections, or Direct Collapse?

| Empirical Property                                                           | Clump<br>Ejection | BD ejection  | Core<br>Collapse |
|------------------------------------------------------------------------------|-------------------|--------------|------------------|
| Can very low mass fragments collapse?                                        | $\checkmark$      | N/A          | ?                |
| Presence of disks around BDs                                                 | $\checkmark$      | ?            | $\checkmark$     |
| Isolated very low mass cores                                                 | <b>~</b>          |              | <b>~</b>         |
| Moderate velocity dispersion of BDs                                          | $\checkmark$      | ?            | <b>~</b>         |
| BDs and young stars generally co-located                                     | $\checkmark$      | ?            |                  |
| BD-star binaries generally on wide orbits, tens of AU ("brown dwarf desert") | $\checkmark$      | $\checkmark$ |                  |
| BD-BD binaries generally very close, few AU                                  | $\checkmark$      | $\checkmark$ |                  |
| A few wide BD-BD binaries                                                    |                   |              | $\checkmark$     |

#### Summary

- Disk evolution calculated from self-consistent collapse of dense core yields a paradigm of episodic clump formation, migration (leading to episodic accretion), dissolution, or ejection.
- This scenario leads naturally to ejected clumps that straddle the substellar mass limit. Can expect the formation of isolated BDs and VLMSs that have their own disks.
- Ejection speeds are moderate, ~ 1 km/s, arising self-consistently, and not dependent on sink cell approximations. Expect BDs to be colocated with and having same velocity dispersion as stars
- A wide range of BD observations can be understood at least qualitatively using this hybrid scenario of clump ejections arising from interaction of multiple fragments within the disk