Classical T Tauri stars with XShooter

Natascha Rudolf¹, Hans Moritz Günther², J.H.M.M. Schmitt¹ (1) Hamburger Sternwarte, Universität Hamburg, natascha.rudolf@hs.uni-hamburg.de (2) Harvard Smithsonian Center for Astrophysics

Abstract. We observed a sample of 20 Classical T Tauri stars (CTTS) covering a range of ages and evolutionary stages with VLT/XShooter (085.C-0764(A)). Its wide wavelength coverage allows to simultaneously observe HI lines in the Balmer, Paschen and Brackett series which supposedly originate from the accretion funnels. These lines can be used to determine temperature and density in the emission region. HI lines with common upper level whose flux ratio is independent of the physical conditions in the gas can also be used to probe the reddening due to the dust in the stellar environment. Additionally, several tracers of winds and accretion can be compared. We present information on the sample and the data as well as first results.

The sample.

Object	Spectral Type	EW Hα in Å	EW H α in Å	log M
			(Literature examples)	In M _o /yr ^a
TW Hya	K6	154	86, 142, 194, 240	-7.9
MP Mus	K1	35	23, 37	-8.7
EX Lup	MO	19	31,43	-9.7
GQ Lup	K7	47	3, 32	-7.8
HO Lup	M1	139	220, 239	-8.5
IM Lup	MO	8	7	-10.2
RU Lup	G5	170	96, 136, 216	-7.8
V853 Oph	M4	78	41, 46	-9.2
V2058 Oph	K4	73	67, 84, 100	-7.8
V2062 Oph	K3	76	54, 58	-7.9
V2129 Oph	K5	21	6, 12, 23	-9.5
V2251 Oph	K5	37	36	-7.9
V2252 Oph	MO	35	45	-8.5
V4046 Sgr	K5	42	33, 42, 60	-8.5
V895 Sco	K5	198	123	-7.1
V1279 Sco	K8	23	37	-9.0
VV Sco	M1	42	42	-8.8
Sz 77	MO	8	9, 17	-10.1
S CrA	A: G5, B: K5	63	65, 90, 120	-6.5
GY 92-168	A: K4-M5, B: K7-M5	73	24	-7.9

Removal of telluric lines.

Following the approach of Seifert et al. (A&A, 524:A11, 2010) we simulated atmospheric transmission spectra using the LBLRTM (Line-By-Line Radiative Transfer Model) code, that was originally developed for use in climatology. After convolving the simulated spectrum with a Gaussian, the observed spectrum is divided by it to remove the telluric lines.

Hamburger

Sternwarte

^a using H α FW@10% (Natta et al. 2004, A&A, 424, 603)

Example spectrum...

Wavelength in Å

Example demonstrating removal of telluric CO₂ absorption from a spectrum of

TW Hya. Black: observed spectrum, red: simulated transmission (convolved with Gaussian, arbitrarily scaled for displaying purposes), blue: final spectrum

Flux calibrated, telluric line removed spectrum of TW Hya. Some important lines are marked and the profiles of H α , He I 10830 Å, Pa β and Br γ are shown in insets with the same flux scale.

... and what we can learn from it.

Mass accretion, its rate and winds:

- H α equivalent width (cf. Table)
- Hydrogen line profiles (esp. H α , Pa β , Br γ , cf. Figure) He I 10830 Å
- Accretion spot hydrogen Paschen and Brackett continuum
 Ca II IR triplet
- UV and optical veiling

Reddening due to dust in the stellar environment:

- Paschen and Brackett lines with common upper level

Temperature and density of the emitting gas:

- Decrements within Balmer, Paschen and Brackett series

Other things: - Age (Li I 6708 Å)

- Spectral type

The wide wavelength coverage of XShooter will allow us to compare and relate simultaneously obtained tracers of mass accretion.